
Chen  
Journal of Orthopaedic Surgery and Research          (2023) 18:775  
https://doi.org/10.1186/s13018-023-04280-9

REVIEW

Application progress of artificial intelligence 
and augmented reality in orthopaedic 
arthroscopy surgery
Haojie Chen1,2* 

Abstract 

In today’s rapidly developing technological era, the technological revolution triggered by the rapid iteration of arti-
ficial intelligence and augmented reality has provided brand-new digital intelligent empowerment for orthopaedic 
clinical operation. Although traditional arthroscopy has been widely promoted globally due to its advantages such 
as minimally invasive, safety and early functional exercise, it still has deficiencies in precision and personalization. 
The assistance of artificial intelligence and augmented reality enables precise positioning and navigation in arthro-
scopic surgery, as well as personalized operations based on patient conditions, which lifts the objective limitations 
of traditional sports medicine surgery. The integration of artificial intelligence and augmented reality with orthopae-
dic arthroscopy surgery is still in infancy, even though there are still some insufficient to be solved, but its prospect 
is bright.
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Introduction
With the leapfrog development of computer technology, 
artificial intelligence (AI) and augmented reality (AR) 
technologies have ceaselessly evolved and have been 
widely applied in various fields such as industry, educa-
tion and health care. In recent years, as a pioneer in the 
medical industry exploring the application of high-tech, 
orthopaedics has taken many “first steps” in the blue 
ocean of precision medicine with the help of AI and AR 
technologies. The domestically developed Tianji® ortho-
paedic surgical AI robot [1] has become the world’s only 
orthopaedic robot system capable of performing limb, 

pelvic and spinal segment surgeries, with an accuracy 
leading globally of up to 0.8 mm [2–4].Tianji® robot has 
been routinely applied in more than 150 medical institu-
tions in China, with a surgical volume exceeding 30,000 
cases so far. The world’s first AI-driven spine surgery aug-
mented reality (AR) navigation system, HOLO Portal™, 
already obtained FDA (Food and Drug Administration) 
approval for surgical guidance with 510(k) clearance in 
January 2022. However, compared with the mature appli-
cation of “AI + AR” technology in other fields of ortho-
paedics, its application in arthroscopic surgery is still in 
the early stages.

Arthroscopic surgery, which allows surgeons to extend 
their "eyes" and "hands" into the joint, has been widely 
performed on joints throughout the body, from large 
joints such as the hip and knee to small joints such as the 
interphalangeal joint, owing to its advantages of mini-
mally invasive, safety and early functional exercise since 
the early twentieth century. Meanwhile, it has limita-
tions such as limited operating space, limited field of 
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view and insufficient surgical precision as is known to 
all [5]. In recent years, orthopaedic surgeons and engi-
neers at home and abroad have attempted to use AI and 
AR to promote arthroscopic surgery and have made sig-
nificant progress. For example, it has improved surgical 
safety, increased the precision of navigation and opera-
tion under the arthroscope, reduced the incidence of 
surgical complications, reduced intraoperative radiation 
damage and shortened the duration of surgery, opening 
up a new situation for the interdisciplinary development 
of biomedicine and engineer in sports medicine area [6]. 
This article will provide a comprehensive review of the 
principles of four parts including AI and AR technol-
ogy in surgery, the composition of AI and AR surgical 
systems, the current application of AI and AR in ortho-
paedic arthroscopy surgery, and the disadvantages and 
challenges of applying AI and AR in the field of orthopae-
dic arthroscopy.

Principles of AI and AR technology in surgery
Artificial intelligence is abbreviated as AI, and its prin-
ciple can be roughly summarized as combining a large 
amount of data, mighty computing power and intelligent 
algorithms to build models that solve specific problems, 
enabling programs to automatically learn potential pat-
terns or features from the data, thus achieving a thinking 
process similar to humans [7]. Augmented reality (AR) 
utilizes computer graphics and visualization technology 
to generate virtual objects that do not exist in the real 
world and accurately place them in the real world, pre-
senting users with a new environment with richer per-
ception [8]. Currently, AI technology is mainly applied 
in the planning and navigation stages of orthopaedic 
surgical robots. By transmitting patients’ X-ray, CT or 
MRI imaging data to computers before surgery, AI can 
use difference in texture or colour of vascular angiogra-
phy and CT or MRI sectional scans to construct 2D or 
3D model images mapping the surgical space. Based on 
this, AI can plan the surgical path, simulate the surgical 
process, analyse and process intraoperative images in real 
time, autonomously segmenting and labelling anatomical 
structures, and planning more scientifically reasonable 
surgical paths based on recognized key points [9, 10]. 
Different from AI, AR systems mainly use non-realistic 
rendering or reverse reality technology to render the 
established virtual model and present it on the display, 
accurately reintegrating the model image and guidance 
information into the real scene, dynamically displaying 
the anatomical relationship between surgical instruments 
and surgical sites, and accurately assisting surgeons 
in completing surgical operations, realizing the visu-
alization and deep perception of the primary surgeon’s 
information [11]. The development and integration of 

AI and AR in surgical devices are in varying degrees, 
but the combination of AI and AR systems can achieve 
a synergistic effect described as “1 + 1 > 2”, which namely 
enabling intelligent matching and precise positioning, 
three-dimensional dynamic observation, display of the 
depth and angle of the surgical path, avoiding danger-
ous areas, providing rich surgical image information and 
monitoring the surgical environment and process. Cur-
rently, it has been applied in orthopaedic surgery, trauma 
surgery and spinal surgery with excellent results [12].

Composition of AI and AR surgical systems
AI surgical systems typically consist of medical imaging 
module, tracking and positioning module, and display 
module [13]. Firstly, various high-resolution imaging 
examination data form the basis for high-definition 
modelling in the imaging module. Secondly, the work-
ing mode of the tracking and positioning module can 
be divided into the following types: magnetic field posi-
tioning, ultrasound positioning, optical positioning and 
mechanical positioning. Optical positioning has the high-
est precision and is currently the most commonly used 
positioning method in orthopaedic AI surgery. The track-
ing and positioning module mainly includes sensors and 
locators to achieve real-time tracking and positioning of 
the relative position between surgical instruments and 
lesions. The sensors are usually pre-fixed on the patient, 
and surgical tools then can be tracked by the locator; 
therefore, the locator receives signals from the sensors 
in real time. After processing the information based on 
software algorithms, the relevant information could be 
transmitted to the image display module. Finally, the 
image display module mainly implements two functions: 
spatial registration and image fusion. Spatial registration 
is to unify preoperative imaging, intraoperative imaging, 
surgical instruments and lesions in one spatial coordinate 
system by software algorithms. Image fusion is to com-
prehensively display the registered medical images and 
the position information of the tracking and position-
ing module to achieve a more intuitive and clear display 
effect [14]. There also needs to be equipped with operat-
ing arms, eccentric mechanisms, specially made surgical 
instruments and other hardware facilities if it was an AI 
robot.

AR surgical systems consist of three core components: 
virtual image or environment modelling, registration of 
the virtual environment with real space and display tech-
nology combining the virtual environment with the real 
world [15]. The first two components are essentially the 
same as the AI surgical system in terms of hardware and 
software composition. The main difference between AR 
and AI technology lies in the display technology combin-
ing the virtual environment with the real space. The types 
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of AR display technology can be roughly divided into 
head-mounted display (HMD), enhanced optical system, 
enhanced external display, enhanced window display and 
image projection. HMD can overlay the virtual environ-
ment on the real world in the user’s field of view (optical 
perspective) or on the video source in the real environ-
ment (video perspective). Enhanced display is displaying 
virtual content on the video of the real world through 
an independent screen. Optical enhanced display refers 
to direct enhancement of the eyepiece of the operating 
microscope. Window enhanced display is to place a semi-
transparent screen directly above the surgical site, allow-
ing virtual objects to be displayed straight on the screen 
above the real object and be directly projected onto the 
patient through a projector.

Current status of application of AI and AR 
in orthopaedic arthroscopic surgery
Shoulder arthroscopy
Jung et al. [16] compared the differences in anchor place-
ment effects when five operators performed conven-
tional and AI-assisted arthroscopic surgery on prosthetic 
models and cadaver shoulders. In prosthetic models, the 
experimental tasks included anchor placement in the 
rotator cuff footprint and suture knotting operations. 
A motion analysis camera system was used to track the 
hand movements of the surgeons, and the surgical per-
formance indicators included total path length, number 
of operations and duration of surgery. In the cadaver 
experiment, the feasibility of AI-assisted anchor insertion 
was verified by comparing the repeatability and repro-
ducibility of anchor angles inserted by three experts. 
The results shows that there was no significant differ-
ence in total path length, number of operations and 
time between conventional shoulder arthroscopy and 
AI-assisted shoulder arthroscopy systems in the pros-
thetic models. However, in the cadaver experiment, the 
statistical data of the anchor insertion angle show that 
AI assistance enabled both novice and expert surgeons 
to repeatedly insert anchors at angle close to the prede-
termined target, with an angle error < 2° (P < 0.05), which 
indicates that AI assistance can improve the accuracy of 
anchor insertion, allowing even inexperienced surgeons 
to easily insert suture anchor along the correct direction, 
significantly improving the surgical outcomes of begin-
ners and achieving high repeatability and reproducibility 
of anchor insertion.

Critical shoulder angle (CSA) refers to the angle 
between the line connecting the upper and lower borders 
of the glenoid cavity and the line connecting the lower 
border of the glenoid cavity and the outer border of the 
acromion. Moor et al. [17–20] believe that CSA describes 
the relationship between acromion lateralization and tilt 

of glenoid cavity, which has been proved to be an effec-
tive predictor of shoulder joint pathological develop-
ment. Numerous studies have shown that shoulders with 
a CSA less than 30° may be associated with osteoarthri-
tis, while shoulders with a CSA greater than 33°–35° are 
related to rotator cuff tears (RCT). Nevertheless, how to 
avoid insufficient CSA or excessive reduction in shoulder 
arthroscopy acromioplasty remains a challenging prob-
lem at present. The team led by Yang et al. [21] proposed 
a computer image-guided precise acromioplasty (CIG-
PAP) technique, which is a personalized treatment based 
on three-dimensional (3D) planning. It utilizes modelling 
techniques common to AI and AR to premark and meas-
ure bone resection on the model, enabling the reduction 
of larger CSA to the desired range (30°–33°) during sur-
gery. CIG-PAP is particularly suitable for patients with an 
initial CSA greater than 35° combined with preoperative 
RCT and can bring clinical benefits to patients in combi-
nation with arthroscopic rotator cuff repair.

Elbow arthroscopy
Guo et  al. [22] explored the efficacy of AI-assisted 
arthroscopy in the treatment of primary elbow osteo-
arthritis with stiffness. Preoperatively, AI is used to 
simulate elbow joint motion from 0° extension to 140° 
flexion to determine the location and extent of osteo-
phyte impingement, and 3D modelling is used to display 
the amount and degree of osteophyte removal needed in 
the anterior and posterior directions of the elbow joint. 
Afterwards, arthroscopic visualization is in order to 
assess the effect of elbow joint release and osteophyte 
removal. Visual analog scale (VAS), Mayo elbow perfor-
mance score (MEPS) and elbow range of motion are for 
the purpose of evaluating elbow joint function pre- and 
postoperatively. Statistical analysis of the data at the 
last follow-up revealed significant improvement in VAS 
scores, MEPS scores and elbow range of motion com-
pared to preoperative values, indicating significant pain 
reduction and functional recovery.

Shiode et  al. [23] adopted an AI-assisted system in 
elbow arthroscopy for joint debridement and found that 
the accuracy of using the AI-assisted system for elbow 
arthroscopic debridement was the same as that in other 
joints.

In elbow arthroscopic debridement, the identifica-
tion and precise removal of impinging bone lesions 
present technical challenges. Shigi et  al. [24] utilized 
an AI system combined with preoperative three-
dimensional evaluation of impinging bones to pro-
vide real-time tracking of surgical instruments and 
impinging lesions. The registration procedure was 
tested using resin bone models of three patients with 
elbow osteoarthritis. Digitalization of bone surface 
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points was conducted using a navigation pointer dur-
ing arthroscopy. The total registration accuracy for 
the humerus and ulna was 0.96  mm and 0.85  mm, 
respectively. There was no significant difference in 
registration accuracy of the humerus and ulna among 
the three observers during arthroscopy, confirming 
the feasibility of AI-guided navigation in arthroscopic 
surgery.

Wrist arthroscopy
Scaphoid injuries are extremely common in wrist inju-
ries as well as have a high non-union rate. Statistics 
show a non-union rate of 40% in conservatively treated 
scaphoid fractures with cast fixation. Due to the small 
size, concealed location, complex and irregular three-
dimensional morphology of the scaphoid, it is difficult 
to insert screws accurately during traditional internal 
fixation surgery, which can easily lead to complica-
tions such as joint cartilage wear and delayed or non-
union fractures [25–29]. The team led by Fang et al. [30, 
31] attempted autogenous bone grafting under wrist 
arthroscopy combined with AI robot-guided placement 
of compression screws to treat scaphoid non-union and 
Herbert-type D1 scaphoid fractures. Both the postop-
erative Mayo function score and VAS pain score were 
satisfactory, the wrist range of motion and grip strength 
significantly improved as well.

Professor Liu et  al. [32] screened subacute scaphoid 
fractures with wrist arthroscopy and performed screw 
placement under AI robot navigation. The postopera-
tive follow-up showed excellent results with satisfac-
tory positioning and length of internal fixation as well 
as good fracture reduction, proving the technical feasi-
bility of wrist arthroscopy under AI assistance.

Jeung et  al. [33] hold the opinion that the difference 
between intraoperative joint conditions and preopera-
tive CT/MR images since the movement applied during 
the operation results in inaccurate targeting for surgical 
approaches. To accurately display hidden wrist bones in 
arthroscopic images, they proposed a surgical guidance 
system that utilizes a new bone displacement compen-
sation method employing non-invasive reference mark-
ers, which greatly eliminates AR errors caused by wrist 
traction. Furthermore, this system allows for precise 
AR display of hidden bones and expands the limited 
field of view of the arthroscope. The proposed bone dis-
placement compensation method can also be applied to 
other joints, such as the knee or shoulder, by represent-
ing their skeletal movements by corresponding virtual 
links. Additionally, the motion of the joint skin during 
surgery can be measured using non-invasive reference 
markers in the same way as the wrist joint.

Hip arthroscopy
Cam morphology, which refers to a shape of the cam, 
is one of the important factors leading to hip impinge-
ment. The teams led by Nakamura et  al. [34] and Kob-
ayashi et  al. [35], respectively, had taken advantage of 
computer navigation for preoperative planning and intra-
operative navigation of hip arthroscopy in the treatment 
of hip impingement, as allows accurate identification of 
impingement points and the location and extent of cam 
lesions, thereby enabling precise femoral head and neck 
osteoplasty.

Stražar et  al. [36] considered that the use of AR sys-
tem in hip arthroscopy was highly effective with obvious 
advantages. Prior to surgery, three-dimensional recon-
struction of the hip joint was performed capitalizing 
upon low-dose CT scan. The EBSVR software is applied 
for pelvic examination with α and γ angles serving as 
anatomical parameters for femoral head sphericity. After 
identifying the impingement area, the improvement of 
range of motion (ROM) following virtual resection was 
predicted. The model of the preplanned bone volume 
resection was then transferred to the GUIDING STAR® 
VR surgical navigation system based on electromagnetic 
tracking for the purpose of precise surgical positioning 
and meticulous operation. This approach reduced sur-
gery time and intraoperative fluoroscopy, while achieving 
near-perfect femoral head sphericity.

Abe et  al. [37] deemed that even though AI-assisted 
surgery can improve the accuracy of arthroscopic bone 
and cartilage shaping procedures, there are few clinical 
studies evaluating their accuracy. Their study focused on 
patients with cam-type femoroacetabular impingement 
(FAI) who underwent AI-assisted arthroscopic surgery. 
Three-dimensional models of the femur were constructed 
based on CT data for each patient, virtual cam resection 
models were generated preoperatively, postoperatively 
femoral models were reconstructed based on CT data, 
and the above three models for each patient were super-
imposed manipulating a three-dimensional model regis-
tration method. Subsequently comparing the contours of 
the bone resection areas in each model, it was found that 
AI-assisted arthroscopic bone and cartilage shaping pro-
cedures showed good accuracy. Despite the help of intra-
operative navigation, incomplete resection in the anterior 
superior portion of the femur was more common than 
over-resection.

Knee arthroscopy
Arthroscopic reconstruction of the cruciate ligament 
under guidance is one of the earliest arthroscopic pro-
cedures that have been assisted by AI technology, as is 
mainly used for the selection of reconstruction sites and 
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bone tunnel directions. In 2006, Hong et al. [38] used a 
computer navigation system based on X-ray imaging to 
assist arthroscopic anterior cruciate ligament (ACL) 
reconstruction. They held that AI-assisted navigation 
provided data which were closer to the anatomical recon-
struction position, allowing for more accurate place-
ment of the femoral and tibial tunnels; furthermore, the 
technique was considered safe and feasible. Wang and 
Peng [39] made use of AI to assist arthroscopic ACL 
reconstruction surgery, in which they utilized bone tun-
nel navigation based on anatomical landmarks and kin-
ematic data of the knee joint. The study concluded that 
this method provided accurate positioning and excel-
lent postoperative outcomes. Zhang Kai’s team [40] per-
formed reconstruction of injured with a vascular pedicle 
patellar ligament. They compared the consequences of 
ACL reconstruction between AI-assisted arthroscopy 
and traditional arthroscopy by measuring the bone tun-
nels in postoperative CT scans. The results suggested 
that the AI group had higher positions of both the femo-
ral and tibial tunnels than the traditional group, and the 
AI group had significantly higher Lysholm scores at 3, 6 
and 12  months postoperatively, fewer fluoroscopy pro-
cedures during surgery and tighter fit with the distance 
less than 2 mm between the posterior wall of the tunnel 
and the proximal posterior cortex of the tibia while mild 
rupture of the exit site of the posterior wall in the tradi-
tional group. These results suggested that AI-assisted 
arthroscopic ACL reconstruction is more accurate, safe, 
anatomical and ideal in terms of outcomes compared to 
traditional arthroscopy. Qiu et al. [41] found no statisti-
cal difference in knee joint stability and function between 
AI-assisted and manual ACL reconstruction. How-
ever, AI-assisted ACL reconstruction resulted in femo-
ral tunnel positioning that was closer to the anatomical 
position, while tibial tunnel positioning did not show sig-
nificant differences compared to manual positioning. Hu 
et al. [42] leveraged 30 fresh frozen adult knee joint spec-
imens to build three-dimensional models based on CT 
data and performed tibial tunnel reconstruction under 
the real-time monitoring of an electromagnetic naviga-
tion system according to the 3D models. They meas-
ured the sagittal angle, tunnel length and exit position 
of the tibial tunnel and then draw a conclusion that the 
planned tibial tunnel angle and length matched the meas-
ured results with high accuracy. In addition, the system 
was found to be convenient and effective as an assisting 
positioning method. Zhang et al. [43] conducted a retro-
spective cohort study comparing the clinical efficacy of 
AI-assisted arthroscopic ACL reconstruction with that of 
traditional arthroscopy. They found that the AI-assisted 
group wasted slightly longer time, but was able to pre-
pare bone tunnels with good positioning and direction in 

one step, achieving similar joint stability and functional 
recovery as the traditional arthroscopy group. Yang Xiao 
[44] successfully completed the first case of AI-assisted 
arthroscopic reduction and fixation for children’s avul-
sion fracture of posterior cruciate ligament (PCL) arrest 
in China, greatly reducing intraoperative radiation expo-
sure for the children and minimizing the impact on the 
normal growth and development of the proximal tibia.

The disadvantage of knee arthroscopy is the lack of 
depth information and potential obstruction of the field 
of view. To address these issues, engineer Ma [45] and his 
team developed an AI navigation system for arthroscopy 
based on self-localization technology. They fused visual 
and inertial data to estimate the arthroscope’s pose on 
the basis of visual inertial stereo odometry and used vir-
tual visualization to provide flight views and global locali-
zation views for surgical guidance as the same time. The 
flight view provided surgeons with a method to navigate 
the arthroscope within internal anatomical structures 
in a manner of virtual camera perspective. The global 
localization view displayed the arthroscope’s pose rela-
tive to the preoperative model in a transparent manner. 
His team also developed a flexible calibration method to 
transform the real pose of the arthroscope into a virtual 
visual rendering framework for arthroscopic navigation 
systems with self-localization information. This system 
expanded the working range, improved the robustness 
of rotational operations and meanwhile had great poten-
tial for medical applications by eliminating the need for 
external tracking devices or added markers.

Raposo et al. [46] have made a technical upgrade to the 
current registration system. They manipulated visually 
recognizable markers attached to both the skeleton and 
arthroscopic tools to estimate their relative poses. Then 
they aligned the preoperative anatomical images of the 
patients with a set of reconstructed contours of the bone 
surface obtained through instrument contact using a 
state-of-the-art registration algorithm. Experimental val-
idation based on ex vivo data indicated that the method 
achieved precise registration of the preoperative model 
with the skeleton, as had the advantages of high accuracy 
and short time consumption and did not require addi-
tional incisions or equipment, making it an attractive 
alternative AR solution.

Ankle arthroscopy
The team led by Xu et  al. [47] retrospectively analysed 
the difference in the effect of reduction and internal fixa-
tion for neck fracture of talus under AI robot-assisted 
arthroscopy and traditional arthroscopy. The outcomes 
demonstrated that the AI group had better postopera-
tive ankle joint function assessed by AOFAS score and 
lower VAS pain score compared to the control group, 
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which were satisfactory and worth promoting. Cao et al. 
[48] applied the Tianji® orthopaedic robot AI naviga-
tion system combined with ankle arthroscopy technique 
for internal fixation of Hawkins II type neck fracture of 
talus. There were no complications such as incision infec-
tion or avascular necrosis of the talus, and postopera-
tive imaging confirmed satisfactory internal fixation and 
fracture reduction. The average AOFAS score at the latest 
follow-up was up to 91.0. The author considered that the 
method has the advantages of minimally invasive, precise 
reduction and fixation, fewer postoperative complica-
tions together with positive short-term efficacy.

During ankle arthrodesis under arthroscopic surgery, 
even experienced surgeons often spend a certain amount 
of time and multiple attempts to reach the predeter-
mined target position while performing Kirschner wire 
drilling. To address this issue, Duan et al. [49] imported 
ankle joint DICOM data obtained through CT examina-
tion into MIMICS software and utilized 3D printing to 
design personalized guides afterwards. The control group 
used Kirschner wire drilling based on the surgeon’s pre-
vious experience, while the experimental group used the 
guide to drill two 2 mm Kirschner wires with the position 
of the wires confirmed by taking a C-arm X-ray before 
inserting hollow screws. As a result, the application of 3D 
printing personalized guides assisted accurate drilling in 
ankle arthrodesis, saving approximately 2 min of surgery 
time and reducing intraoperative radiation. There were 
no significant complications in either group during or 
after surgery. Postoperative X-ray confirmed bone fusion 
in all cases, confirming that this technique does not affect 
surgical outcomes.

Limitations and challenges of AI and AR 
in orthopaedic arthroscopy
In spite of significant advantages of AI and AR technolo-
gies over traditional arthroscopic surgery, there are still 
some unresolved issues range over: 1. there is an insuf-
ficient interdisciplinary collaboration between biomedi-
cine and engineer in the development of AI and AR 
hardware and software, without fully utilizing the clinical 
expertise of specialists. 2. AI and AR surgical equipment 
development is still in the initial stage, whose accu-
racy, safety, portability and reliability need to be further 
improved. 3. System updates, algorithm upgrades and 
firmware updates regularly require network connectivity, 
posing risks of patient information leakage. It is necessary 
to consider establishing legal and ethical regulations for 
AI medical data [50]. 4. The navigation reference frame 
and the patient’s surgical area must be firmly fixed, as any 
movement or misalignment during registration probably 
occur [51]. 5. Intraoperative manipulations often cause 
deformation or displacement of soft tissues, making it 

difficult to fully reproduce preoperative planning [52]. 
6. The defining of truth labels can be significantly influ-
enced by subjective factors in deep learning of navigation 
algorithms and then bring about result biases, highlight-
ing the need for more objective standards such as intra-
operative verification and pathological examination [53]. 
7. Current AI surgical robots are only playing the role of 
assistant of surgeons. Moreover, decision-making power 
remains in the hands of the surgeon, the optimal balance 
between AI intelligence and surgical safety. 8. The infor-
mation registration, data acquisition as well as image reg-
istration processes of navigation tools are complex and 
can delay the duration of the surgery by 5–7  min [54]. 
9. Most AI-assisted arthroscopic surgeries require addi-
tional incisions for fixing reference frames, increasing 
patient trauma [55]. 10. Non-rigid transformations got 
regularly neglect in image fusion. 11. Learning navigation 
techniques requires rigorous training with a long learn-
ing curve and difficulty of operation. 12. Even if AI and 
AR technologies combining with arthroscopy systems 
developed for small joints such as the finger joint is rec-
ognized to be able to achieve more precise arthroscopic 
surgery, as still faces high technical barriers, limited sup-
porting equipment and a lack of sufficient data. 13. The 
procurement and operational costs of AI and AR devices 
are high, potentially increasing the surgical expenses for 
patients. 14. Effective frameworks need to be established 
for the standardized collection and secure manage-
ment of multi-source, multi-modal, homogeneous and 
heterogeneous medical data. It is equally important to 
design new algorithms for small or limited datasets that 
can learn independently [3]. 15. The lack of open-source 
basic algorithms and communication protocols makes 
standardization and widespread adoption difficult [56].

Summary and prospects of AI and AR applications 
in orthopaedic arthroscopy
In recent years, AI and AR technologies have developed 
rapidly and have given rise to related surgical assistive 
devices, greatly promoting the advancement of ortho-
paedic arthroscopy. The application of AI- and AR-
assisted technologies in orthopaedic arthroscopy allows 
for personalized surgical planning based on individual 
patient characteristics. This demonstrates the advan-
tages of intelligent empowerment technology, personally 
summarized as the “3 FOURs” means “four increases, 
four reductions and four transformations”. The “four 
increases” contains more accurate intraoperative posi-
tioning, precise operation, closer approximation to ana-
tomical reconstruction and reduction and improved 
surgical safety. The "four reductions" involves reduced 
surgical risks, shortened operative time, decreased intra-
operative radiation and lowered risk of postoperative 
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complications. The "four transformations" consists of vis-
ualization of blind spots, minimization of invasive con-
ventional surgery, securitization of complex procedures 
and intelligentization of key operations.

The transformational application of AI and AR in the 
healthcare industry has been identified as a key area for 
future development by numerous countries and regions. 
According to the latest annual report released by reputed 
research firm—ReportLinker, the global healthcare AI 
market is projected to grow from $14.6 billion in 2023 to 
$102.7 billion in 2028, with a compound annual growth 
rate of 47.6% during this period. With the rapid develop-
ment of related technologies and the establishment of 
industry standards, it is believed that AI- and AR-assisted 
orthopaedic arthroscopy systems will gradually over-
come the current limitations of insufficient intelligence, 
algorithmic bias, high technical barriers and expensive 
equipment. AI- and AR-assisted orthopaedic arthro-
scopic surgery is expected to achieve more precise and 
scientific personalized treatment in future operating 
rooms. Besides the increase in the autonomous decision-
making capability of AI, precision, safety and reliability 
will simultaneously improve. AR device development will 
be more focused on technology that integrates closely 
with human organs, such as retina displays and human–
machine symbiosis, hence which the performance and 
portable wearable devices will become research hot 
spots in the near future. With the combined incuba-
tion of global industry demand, financial support and 
policy driving, the field of AI- and AR-assisted intelli-
gent arthroscopic surgery technology possesses immense 
development potential and the future looks promising.
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