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Abstract 

Purpose Tenosynovial giant cell tumour (TGCT) is a benign hyperplastic and inflammatory disease of the joint syn-
ovium or tendon sheaths, which may be misdiagnosed due to its atypical symptoms and imaging features. We aimed 
to identify biomarkers with high sensitivity and specificity to aid in diagnosing TGCT.

Methods Two scRNA-seq datasets (GSE210750 and GSE152805) and two microarray datasets (GSE3698 
and GSE175626) were downloaded from the Gene Expression Omnibus (GEO) database. By integrating the scRNA-seq 
datasets, we discovered that the osteoclasts are abundant in TGCT in contrast to the control. The single-sample gene 
set enrichment analysis (ssGSEA) further validated this discovery. Differentially expressed genes (DEGs) of the GSE3698 
dataset were screened and the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 
enrichment analyses of DEGs were conducted. Osteoclast-specific up-regulated genes (OCSURGs) were identified 
by intersecting the osteoclast marker genes in the scRNA-seq and the up-regulated DEGs in the microarray and by the 
least absolute shrinkage and selection operator (LASSO) regression algorithm. The expression levels of OCSURGs 
were validated by an external dataset GSE175626. Then, single gene GSEA, protein–protein interaction (PPI) network, 
and gene-drug network of OCSURGs were performed.

Result 22 seurat clusters were acquired and annotated into 10 cell types based on the scRNA-seq data. TGCT had 
a larger population of osteoclasts compared to the control. A total of 159 osteoclast marker genes and 104 DEGs 
(including 61 up-regulated genes and 43 down-regulated genes) were screened from the scRNA-seq analysis 
and the microarray analysis. Three OCSURGs (MMP9, SPP1, and TYROBP) were finally identified. The AUC of the ROC 
curve in the training and testing datasets suggested a favourable diagnostic capability. The PPI network results illus-
trated the protein–protein interaction of each OCSURG. Drugs that potentially target the OCSURGs were predicted 
by the DGIdb database.
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Introduction
Tenosynovial giant cell tumour (TGCT), of which there 
is a localized and a diffuse type, is a monoarticular, 
mesenchymal lesion of the joint synovium or tendon 
sheaths [1, 2], characterized by both neoplastic and 
inflammatory features [3]. Although the diffuse type 
was called pigmented villonodular synovitis (PVNS) 
in the past, TGCT has been proposed to replace both 
designations in the latest version of the World Health 
Organization classification [4]. The symptoms of 
TGCT, such as pain, tenderness, swelling, or limitation 
of motion, are unspecific, causing magnetic resonance 
imaging (MRI) and pathological biopsy necessary 
to make a proper diagnosis [5]. The localized TGCT 
appears as a focal mass that usually abuts or surrounds 
the tendon while joint effusion or synovial fluid is typi-
cal in the diffuse type [6, 7]. Sometimes TGCT mim-
ics other soft tissue tumours on MRI, making diagnosis 
challenging [8, 9].

Microarray analysis is a powerful tool to uncover gene 
expression differences between disease conditions and 
controls whereas single-cell RNA sequencing (scRNA-
seq) helps reveal transcriptome heterogeneity between 
cells. Several studies have combined them to construct 
a prognosis model [10] and show the landscape of the 
immune microenvironment [11] and the mechanisms 
of biological processes [12]. Using sequencing tech-
niques, researchers revealed that osteoclastogenesis 
and osteoclast differentiation are vital characteristics 
of TGCT [13, 14]. However, no studies explore the pos-
sibility of diagnosing TGCT using osteoclast-specific 
genes.

In this study, we integrated two scRNA-seq data-
sets [14, 15] and two microarray datasets [13, 16] from 
Gene Expression Omnibus (GEO) dataset to identify 
osteoclast-specific up-regulated genes (OCSURGs) 
to predict the diagnosis of TGCT. Up-regulated genes 
were screened from the discovering cohort (GSE3698, 
GSE210750, and GSE152805). Three OCSURGs 
(MMP9, SPP1, TYROBP) were identified after making 
an intersection and the least absolute shrinkage and 
selection operator (LASSO) regression. Receiver oper-
ating characteristic (ROC) curves and area under the 
curve (AUC) of these OCSURGs suggest a good diag-
nostic value. The protein–protein interaction (PPI) 
network and single-gene gene set enrichment analysis 

(GSEA) were used to probe their possible protein inter-
action and pathway. Finally, the gene-drug network 
was built to explore the potential drugs targeting three 
OCSURGs.

Materials and methods
Datasets selection
Two microarray datasets (GSE3698 and GSE175626) and 
two scRNA-seq datasets (GSE210750 and GSE152805) 
were selected. GSE3698 includes synovial membrane tis-
sues from osteoarthritis (OA) patients (n = 19), rheuma-
toid arthritis (RA) patients (n = 18), and TGCT patients 
(n = 11). GSE175626 contains three synovial membrane 
tissues from OA patients and three synovial membrane 
tissues from TGCT patients. GSE210750 includes three 
TGCT lesions. GSE152805 includes synovial membrane 
tissues from OA patients (n = 3). Data from the RA syn-
ovial membrane was removed for further analysis. OA 
synovial membrane was considered as the control in this 
study.

Microarray analysis
The gene expression matrix of microarray datasets was 
downloaded from the GEO. Probes were transformed 
into gene symbols according to the annotation profile of 
each dataset. The average expression of the duplicated 
genes was calculated for further analysis. Differentially 
expressed genes (DEGs) were screened using the “limma” 
R package [17]. Genes with |log2FC|> 0.5 and adjusted 
P-value (adj. P. Val.) < 0.05 were considered DEGs.

GO and KEGG pathway enrichment analyses
The gene names of DEGs were converted to Entrez ID. 
Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway enrichment analysis of 
the DEGs were performed using the “clusterProfiler” R 
package [18]. The enriched pathway with a p-value < 0.05 
was considered significant.

Quality control of scRNA‑seq datasets
The Seurat package (version 4.3.0) [19] was utilized 
for quality control and further analysis. The barcodes, 
features, and matrix files of each scRNA library were 
read into R using the Read10X function to create Seu-
rat objects. All Seurat objects were merged into an 
integrated one after renaming the cell label with the 

Conclusion MMP9, SPP1, and TYROBP were identified as osteoclast-specific up-regulated genes of the tenosynovial 
giant cell tumour via bioinformatic analysis, which had a reasonable diagnostic efficiency and served as potential 
drug targets.
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RenameCells function. Cells with less than 200 and more 
than 6000 detected features, and those with > 20% mito-
chondrial genes were deleted (Additional file 1: Fig. S1A).

Analysis of scRNA‑seq
The “FindVariableFeatures” method was applied to 
extract genes with high intercellular variability, and 
the top 1200 genes with significant fluctuations were 
extracted for subsequent analysis. The batch effect was 
removed using the Harmony package [20] (Additional 
file  1: Fig.  S1C, D). Doublets predicted by the Doublet-
Finders R package [21] were filtered (Additional file  1: 
Fig. S1E). Finally, cell clusters were identified by running 
the RunUMAP function, the FindNeighbors function, 
and the FindClusters function, with a dimension setting 
of 1:20 and a resolution setting of 0.6.

ssGSEA analysis
The ssGSEA algorithm is an extension of the Gene Set 
Enrichment Analysis (GSEA) that calculates separate 
enrichment scores for each pairing of a sample and gene 
set. Osteoclast marker genes detected by the scRNA-
seq analysis were integrated into the feature gene panels 
from a previous study [22]. The gene expression matrix 
of the GSE3698 dataset and the integrated gene panels 
were used as input files. Then the infiltrating scores of 28 
immune cells as well as osteoclasts in the were calculated 
by running the “gsva” function in the "GSVA" R pack-
age [23] with the “method” parameter set to “ssGSEA” 
and other parameters set to default. This computational 
approach allows researchers to characterize tumour-infil-
trating cells in the microarray or bulk RNA sequencing 
dataset.

ROC curve
The receiver operating characteristic (ROC) analysis was 
performed to examine the sensitivity and specificity of 
three OCSURGs using the “pROC” R package [24]. The 
area under the curve (AUC) was calculated. The AUC 
ranges from 0.5 to 1. The closer the AUC is to 1, the 
higher the predictive ability.

Statistical analysis
All statistical analysis was performed using R software 
(version 4.2.1). Wilcoxon test was conducted to compare 
the difference between groups. P value < 0.05 was consid-
ered statistically significant.

Result
Cells clustering and annotation of scRNA‑seq data
Two scRNA-seq datasets of 10 × Genomics were inte-
grated to explore the cellular component of TGCT and 

OA. The GSE210750 dataset contains 3 TGCT lesions 
which generated 5 libraries, and the GSE152805 con-
tains 3 synovium samples from OA. A high correla-
tion coefficient between the cell counts and genes was 
calculated (R = 0.91) but not observed between the cell 
counts and mitochondrial genes (R =  − 0.48) (Additional 
file  1: Fig.  S1B). A total of 27,314 cells were included 
after quality control and clustered into 22 Seurat clusters 
(Fig. 1A). 9 cell types were manually annotated according 
to the expression level of canonical genes (Fig. 1B, C and 
Table 1). Then we performed Spearman correlation anal-
ysis to compare the transcriptome similarities between 
each Seurat cluster (Additional file 1: Fig. S1F). The cor-
relation coefficient between Seurat cluster 6 and Seurat 
cluster 7 (annotated as osteoclasts) is 0.97. Given that, we 
annotated Seurat cluster 6 as giant cells, which expressed 
osteoclast phenotype in TGCT [25]. Afterwards, we run 
the FindAllMarkers function with a logfc setting of 0.5 to 
screen marker genes of each cell type. The top 10 marker 
genes of each cell type are shown in Fig. 1D. It was worth 
mentioning that the TGCT samples show a greater abun-
dance of osteoclasts and giant cells (Fig. 1E), suggesting 
their potential roles in TGCT. What’s more, we deconvo-
luted the GSE3698 dataset by ssGSEA showing that the 
score of osteoclast, activated dendritic cell, immature 
dendritic cell, central memory CD8 T cell, effector mem-
ory CD8 T cell, macrophage, myeloid-derived suppressor 
cell (MDSC), natural killer T cell, plasmacytoid dendritic 
cell, and T follicular helper cell was significantly higher 
in TGCT than in OA. The score of effector memory CD4 
T cell, type 2  T helper cell, memory B cell, eosinophil, 
and neutrophil was significantly lower in TGCT than 
in OA (Fig.  2). The score derived from ssGSEA reflects 
the degree to which the input gene set is coordinately 
up- or down-regulated within a sample, thus represent-
ing the density of infiltrating cells. We further validated 
the ssGSEA score in the GSE175626 dataset and it also 
showed that the ssGSEA score of osteoclasts was higher 
in TGCT than in OA (Additional file 2: Fig. S2). However, 
there was no statistical difference due to the insufficiency 
of sample size. In a word, we discovered that the infiltra-
tion of osteoclasts was a key feature of TGCT.

Identification of differentially expressed genes (DEGs) 
in the microarray
The gene expression matrix of the GSE3698 dataset 
was downloaded from the GEO and read into R soft-
ware. After transforming the probe ID and calculating 
the mean expression of duplicated genes, we used the 
‘limma’ package to identify a total of 104 DEGs, includ-
ing 61 up-regulated genes and 43 down-regulated genes 
(Fig. 3A and B).
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Fig. 1 Single-cell profiling of TGCT lesions and OA synovial membrane. A UMAP projection of 27314 cells which were clustered into 19 clusters. 
B Feature plots showing the expression level of canonical genes. C UMAP projection of 10 cell types. D Dotplot showing the top 10 marker genes 
of each cell type. E UMAP projection of all cells presenting in different groups
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Functional enrichment analysis of DEGs
GO enrichment analysis and KEGG enrichment analy-
sis were performed to explore the potential function of 
the DEGs. The GO terms include biological processes 
(BP), cellular components (CC), and molecular functions 
(MF). For BP, the DEGs were mainly enriched in antigen 
processing and presentation, leukocyte mediated cyto-
toxicity, response to axon injury, and T cell mediated 

cytotoxicity (Fig.  3B). For CC, the DEGs were mainly 
enriched in lysosomal membrane, lytic vacuole mem-
brane, and vacuolar membrane (Fig.  3D). The top three 
terms of MF were immune receptor activity, collagen 
binding, and ATP: ADP antiporter activity (Fig. 3E). The 
KEGG enrichment analysis shows that the DEGs were 
related to phagosome, rheumatoid arthritis, and asthma 
(Fig. 3F).

Identification of OCSURGs in TGCT 
We made an intersection of the up-regulated DEGs from 
the microarray analysis and osteoclast marker genes 
from the scRNA-seq analysis to yield osteoclast-specific 
up-regulated genes (OCSURGs) in TGCT. A total of ten 
overlapped genes (MMP9, ATP6V1B2, ATP6V1A, SPP1, 
LAPTM5, TYROBP, CSTB, SNX10, CCR1, and GRN) 
were identified (Fig. 4A). Then we divided the GSE3698 
dataset into training and testing cohorts in a 7:3 ratio. The 
least absolute shrinkage and selection operator (LASSO) 
regression algorithm was utilized to narrow down these 
genes (Fig. 4B and C). After tenfold cross-validation, the 
lambda that gives minimal mean cross-validated error 
was 0.016. Three OCSURGs (MMP9, SPP1, TYROBP) 
were retained by increasing the penalty parameter (λ). 

Table 1 Annotation of Seurat clusters

Seurat clusters Cell types Canonical 
marker 
genes

2, 4 Macrophages CD68

10 Proliferating Macrophages CD68, MKI67

7, 21 Osteoclasts MMP9

8 Dendritic cells CLEC10A

11 T cells CD3D

19 Mast cells TPSAB1

0, 1, 9, 18, 20 Fibroblasts LUM

5, 12, 14, 16 Smooth muscle cells TAGLN

3, 13, 15, 17 Endothelial cells VWF

ns ns ns *** ns ns ns *** *** *** *** ns ns * *** ns *** ** ns ns *** *** *** * ns * ns ns ***
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Page 8 of 13Chen et al. Journal of Orthopaedic Surgery and Research          (2023) 18:905 

The diagnostic efficacy of the OCSURGs was validated 
in the training dataset and testing dataset. The AUC of 
the ROC curve in the training dataset was 1.00, 0.95, 
and 0.90, separately (Fig.  4D–F), while the value in the 
testing dataset was 1.00, 0.89, and 0.89(Fig.  4G–I), sug-
gesting a favourable diagnostic capability. What’s more, 
the OCSURGs were also significantly up-regulated in 
the GSE175626 dataset (Fig.  4J–L). However, since the 
GSE175626 dataset only consists of three TGCT lesions 
and three OA synovial membrane tissues, an external 
dataset with a larger sample is needed.

Enrichment analysis, PPI network, and gene‑drug network 
of OCSURGs
To understand the latent pathway of each OCSURG, we 
performed the single gene GSEA analysis. The top five 
pathways of GO and KEGG for three OCSURGs are 
shown in Fig. 5. Then we imported the OCSURGs to the 
STRING database to construct protein–protein interac-
tion (PPI) network (Fig. 6). The edges indicate functional 
as well as physical protein connection, while the line 
thickness implies the strength of data support. Through 
the DGIdb database, we investigated drugs targeting the 
OCSURGs (Table 2). Carboxylated Glucosamine, Andec-
aliximab, Marimastat, Curcumin Pyrazole, Incyclinide, 
S-3304, Tozuleristide, Demethylwedelolactone, Prino-
mastat, Bevacizumab, Celecoxib, and Curcumin targeted 
MMP9. ASK-8007, Calcitonin, Alteplase, Gentamicin, 
Wortmannin, and Tacrolimus targeted SPP1. However, 
no predicted drug was obtained for TYROBP from the 
DGIdb database.

Discussion
Tenosynovial giant cell tumour (TGCT) is a common 
benign soft tissue tumour characterized by immune cell 
infiltration, synoviocytes hyperproliferation, and accu-
mulation of monocyte-derived osteoclasts in the syno-
vial tissue of the joint [25]. Monocytes and stromal cells 
produce cytokines such as tumour necrosis factor α 
(TNF-α), interleukin (IL)-6, and IL-1 to activate osteo-
clast, causing bone destruction and matrix degradation 
[26, 27]. The accumulated giant cells in TGCT also show 
osteoclastic features [27–29]. Due to its atypical symp-
toms, the diagnosis of TGCT is sometimes challenging. 
MRI is a preferred imaging tool for diagnosing soft tissue 
tumours because of its multiplanarity and optimal tis-
sue contrast resolution [30]. However, it may be hard to 
distinguish TGCT from other soft tissue lesions if there 
is a low presence of blooming artefact, which is a char-
acterization of TGCT on gradient echo (GRE) sequences 
[31], and misdiagnoses may occur [8, 9]. Kim et al. [32] 
constructed an MRI prediction model for diffuse TGCT 
based on a relatively small sample size and retrospective 

design. Zhao et  al. [33] reported fine needle aspiration 
cytology (FNAC) may be useful in distinguishing TGCT 
from other cytologically similar lesions. Yet no study 
explores the possibility of using gene signatures to assist 
in diagnosing TGCT so far.

In our scRNA-sea analysis, we found that osteoclasts 
were more abundant in TGCT in contrast to OA synovial 
tissues. Due to the small sample size of the scRNA-seq, 
we applied ssGESA, a deconvolute method, to validate 
this observation. We first identified osteoclast marker 
genes by running the FindAllMarkers function in the 
Seurat package. A total of 159 osteoclast marker genes 
were obtained finally. Then these genes were integrated 
into the feature gene panels from a previous study [22]. 
The ssGSEA score of each cell type was calculated to 
represent the relative abundance. Results showed that 
the proportion of osteoclasts was significantly higher 
in TGCT than in OA. Then we obtained up-regulated 
genes in TGCT from microarray analysis and osteoclast 
marker genes from scRNA-seq analysis. By making the 
intersection of the above genes, we identified ten over-
lapped genes (MMP9, ATP6V1B2, ATP6V1A, SPP1, 
LAPTM5, TYROBP, CSTB, SNX10, CCR1, and GRN). 
The LASSO regression is a machine learning algorithm 
that penalizes the variables to prevent overfitting. Three 
genes (MMP9, SPP1, TYROBP) were eventually retained 
after lasso regression and defined as osteoclast-specific 
up-regulated genes (OCSURGs). The single gene GSEA 
analysis showed that both OCSURGs were related to the 
lysosome, which is an organelle highly related to bone 
resorption [34–36].

As an important member of the matrix metalloprotein-
ase family, MMP9 plays an essential role in normal physi-
ological processes, such as embryonic development [37], 
nervous system development [38], and angiogenesis [39], 
as well as in disease processes. MMP9 is essential for 
migrating and recruiting macrophages into the glomer-
ulus in glomerulonephritis [40]. In addition, it has been 
reported that MMP9 levels were associated with sys-
tolic hypertension and arterial stiffness [41]. Our results 
showed that the AUC value of MMP9 was 1, suggesting 
a favourable ability to distinguish TGCT from control 
samples. However, studies with greater sample sizes are 
needed to confirm this finding. In a recent study [42], 
researchers inhibited the secretion of MMP9, thus sup-
pressing bone resorption by targeting ATP5B, providing 
new insight into protecting bones in rheumatoid arthri-
tis (RA). Since osteoclastogenesis is one of the features 
of TGCT, targeting MMP9 might be a potential therapy. 
S-3304 is a potent inhibitor of MMP2 and MMP9. A 
phase 1 clinical trial which enrolled 32 patients with solid 
tumours showed that S-3304 was extremely well toler-
ated and produced inhibition of gelatinase activity at a 
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Fig. 5 The A GO and B KEGG terms from single-gene GSEA for MMP9. The C GO and D KEGG terms from single-gene GSEA for SPP1. The E GO 
and F KEGG terms from single-gene GSEA for TYROBP
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dose that produced little toxicity [43]. Andecaliximab, 
a monoclonal antibody targeting MMP9, also showed 
promising clinical activity in phase 1 and phase 2 clinical 
trials [44, 45].

Secreted phosphoprotein 1 (SPP1), also known as 
osteopontin, is an extracellular matrix protein involved 
in many biological processes. It is produced by sev-
eral cell types, such as immune cells, smooth muscle 
cells, hepatocytes, neural cells, and cells involved in 
bone morphogenesis, such as osteoblasts and osteo-
clasts [46]. A recent study indicated that osteopontin 

derived from macrophages in epididymal adipose tis-
sue promoted bone resorption [47]. The expression of 
osteopontin in bone tissue is closely related to the for-
mation and arrangement of collagen fibres. Researchers 
found that type I collagen fibres in bone were irregu-
larly arranged, and bone mass was significantly reduced 
by inhibiting the expression of osteopontin, suggesting 
its important function in bone tissue [48]. Except for 
its important role in bone morphogenesis, osteopontin 
was also related to tumour cell proliferation, angiogen-
esis, and metastasis [49]. Calcitonin is a hormone that 
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is primarily produced by the parafollicular cells of the 
thyroid gland. Although researchers found that eel cal-
citonin inhibited osteopontin mRNA expression as well 
as bone-resorbing activity of isolated rabbit osteoclasts 
[50], further studies are needed to explore the potential 
of calcitonin in treating bone erosive disease.

TYROBP gene encodes a transmembrane signalling 
polypeptide that contains an immunoreceptor tyros-
ine-based activation motif (ITAM) in its cytoplasmic 
domain. Together with its receptor, triggering receptor 
expressed on myeloid cells 2 (TREM2), TYROBP con-
tributes to the onset and progression of Alzheimer’s 
disease by impacting various cellular processes such as 
phagocytosis, cytokine production, and inflammation 
[51]. Furthermore, TYROBP regulates both the forma-
tion and function of osteoclasts [52, 53]. Inadequate 
TYROBP/TREM2 signalling leads to a suboptimal and 
delayed differentiation of osteoclasts, which exhibit a 
significantly diminished capacity for bone resorption 
in  vitro [54]. Our study showed that the expression 
level of TREM2 in TGCT is higher than in OA (Addi-
tional file  3: Fig.  S3A). Besides, it was observed that 
the expression of TREM2 showed a positive correla-
tion with that of TYROBP in TGCT (Additional file 3: 
Fig. S3B), but not in the case of OA (Additional file 3: 
Fig.  S3C). These results suggest an underlying role of 
the TYROBP/TREM2 signalling pathway in regulating 
osteoclastogenesis in TGCT.

Conclusion
In summary, we unveiled the difference in the cel-
lular composition of TGCT lesion and OA synovial 
membrane, explored the potential function of DEGs, 
and identified three OCSURGs (MMP9, SPP1, and 
TYROBP) by integrating microarray and scRNA-seq for 
the first time. Furthermore, these OCSURGs showed 
reasonable diagnostic efficiency. Our study may con-
tribute to the diagnosis of TGCT and offer insights into 
the prevention of bone destruction.
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TGCT   Tenosynovial giant cell tumour
GEO  Gene expression omnibus
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ssGSEA  Single-sample gene set enrichment analysis
DEGs  Differentially expressed genes
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Table 2 The predicted drugs targeting the two OCSURGs

Gene Drug Interaction types & directionality Sources Reference (PMID)

MMP9 Carboxylated Glucosamine n/a DTC 16,616,490

MMP9 Andecaliximab antibody (inhibitory), inhibitor (inhibitory) ChemblInteractions/TTD None found

MMP9 Marimastat inhibitor (inhibitory) TdgClinicalTrial/ TEND 12,763,661, 
17,234,180, 
11,752,352

MMP9 Curcumin Pyrazole n/a DTC 19,128,977

MMP9 Incyclinide n/a TdgClinicalTrial None found

MMP9 S-3304 vaccine (activating) TALC None found

MMP9 Tozuleristide n/a TTD None found

MMP9 Demethylwedelolactone n/a DTC 22,926,226

MMP9 Prinomastat vaccine (activating) TALC None found

MMP9 Bevacizumab n/a CIVic 26,921,265

MMP9 Celecoxib n/a PharmGKB 22,336,956

MMP9 Curcumin n/a TTD None found

SPP1 ASK-8007 inhibitor (inhibitory) ChemblInteractions None found

SPP1 Calcitonin n/a NCI 8,013,390

SPP1 Alteplase n/a NCI 12,009,309

SPP1 Gentamicin n/a NCI 11,274,264

SPP1 Wortmannin n/a NCI 14,703,434

SPP1 Tacrolimus n/a NCI 16,103,732
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