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Abstract 

Background  Osteoporosis is a major public health problem, yet the association between dietary folate intake 
and bone health has been rarely studied. This study aimed to investigate the relationship between dietary folate 
intake and bone mineral density (BMD) in the general population of the USA.

Methods  Utilizing data from the National Health and Nutrition Examination Survey, dietary folate intake was gauged 
through 24-h dietary recall and BMD was determined via dual-energy X-ray absorptiometry. Multivariate linear regres-
sion models and generalized additive models were employed for correlation analysis.

Results  The study incorporated 9839 participants (48.88% males, aged 20–85 years, mean age: 47.62 ± 16.22). The 
average dietary folate intake stood at 401.1 ± 207.9 μg/day. And the average total femur, femoral neck, trochanter, 
intertrochanter, and lumbar BMD were 0.98 ± 0.16 g/cm2, 0.84 ± 0.15 g/cm2, 0.73 ± 0.13 g/cm2, 1.16 ± 0.19 g/cm2, 
and 1.03 ± 0.15 g/cm2, respectively. The higher quartiles of dietary folate intake directly correlated with increased total 
femoral, femoral neck, intertrochanteric, and lumbar BMD (P for trend = 0.003, 0.016, < 0.001, and 0.033, respectively). 
A consistent positive association between folate intake and BMD across age groups was observed, with significant 
findings for individuals over 80 years and non-Hispanic whites. Physical activity level and serum 25-hydroxyvitamin D 
levels influenced the association, with an optimal daily folate intake of 528–569 µg recommended for postmenopau-
sal women.

Conclusion  In summary, our study reveals a significant positive association between dietary folate intake and BMD, 
across different age groups and particularly among individuals over 80 years old. Non-Hispanic whites benefit 
the most from increased folate intake. Physical activity level and serum 25-hydroxyvitamin D levels interact with this 
association. Screening and early intervention for osteoporosis may be essential for individuals with low dietary folate 
intake.
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Introduction
Osteoporosis, hallmarked by diminished BMD, escalates 
the risk of severe fractures within the hip, vertebrae, and 
pelvis [1, 2]. Such fractures constitute a primary cause of 
morbidity and mortality within the geriatric population 
and engender considerable medical and economic strain 
on families and the larger society [3, 4].

Folate, a water-soluble vitamin, has been recognized 
for its crucial role in lipid metabolism regulation and 
antioxidant activity [5]. The pathogenesis of osteopo-
rosis is underpinned by oxidative stress [6, 7], where an 
escalation in bone resorption [8], a decline in osteoblast 
activity [9], and amplified osteoblast and osteocyte apop-
tosis [10], collectively contribute to decreased BMD. The 
potential of natural antioxidants, such as folate [11], and 
antioxidant supplements to augment BMD and mitigate 
fracture risk [12, 13] has spurred interest in understand-
ing the effects of dietary antioxidants on BMD, a critical 
cornerstone of preventive strategies [13–15]; the existing 
body of knowledge bears conspicuous gaps.

The preponderance of current BMD literature is dispro-
portionately skewed toward postmenopausal women or 
the elderly [16, 17]. However, the emerging issue of BMD 
deterioration in younger, middle-aged adults resulting 
from increasing unhealthy lifestyle trends and escalating 
severity of environmental pollution in the industrial era 
calls for urgent academic attention [18, 19]. Furthermore, 
current research typically concentrates on BMD explora-
tion within either the lumbar spine [20] or femur alone 
[21]. Given the possibility of BMD inconsistency across 
these regions [22], reliance on single-region evaluation 
may yield incomplete findings. Additionally, synthesiz-
ing multiple studies to infer the effects of dietary folate 
on BMD in the spine and femur may introduce bias due 
to the population heterogeneity inherent in these studies. 
In view of the population’s complex heterogeneity [17], 
there is a compelling need for stratified studies based on 
large samples.

This study seeks to fill these knowledge voids by inves-
tigating the influence of dietary folate on BMD across 
various body regions, including the total femur, femo-
ral neck, trochanter, intertrochanter, and lumbar spine, 
within a broad cross section of the US population, 
extending beyond the elderly demographic. Employing 
a substantial sample size from the US population, this 
research also aims to evaluate BMD stratified by variables 
such as menopausal status, gender, 25(OH)D, physical 
activity, age, and race.

Materials and methods
Study population
The present investigation utilized data harvested from 
the National Health and Nutrition Examination Survey 

(NHANES), an extensive research endeavor managed by 
the National Center for Health Statistics (NCHS). The 
NHANES amalgamates interviews, physical examina-
tions, and laboratory assessments to yield vital health 
statistics for the population of the USA [23, 24]. Follow-
ing the exclusion of participants who had incomplete 
data regarding dietary folate intake and BMD measure-
ments, the study incorporated a cohort of 9839 individu-
als. These participants were selected from four NHANES 
cycles [2005–2010, 2013–2014] for the multi-site BMD 
analysis, encompassing the total femur, femoral neck, 
trochanter, intertrochanter, and the lumbar spine.

The comprehensive selection process for our study 
participants is delineated in Fig.  1. From the 2005–
2006, 2007–2008, 2009–2010, and 2013–2014 cycles of 
NHANES, we initially identified 41,209 participants. 
Thereafter, subjects with incomplete data regarding 
femoral and lumbar spine bone mineral density (BMD) 
(n = 21,771) or dietary folate intake (n = 2540) were 
excluded. Furthermore, we removed participants with 
missing covariate data such as age and gender (n = 8874). 
Consequently, a total of 9839 individuals were incorpo-
rated into the final analysis.

Assessment of dietary folate intake
Data regarding the intake of folate and other nutrients 
were compiled through 24-h dietary recall interviews, 
conducted by trained nutrition professionals. Partici-
pants were requested to reminiscence their food and bev-
erage consumption over the prior 24-h period, detailing 
the timing, quantity, and nature of each item ingested, in 
addition to the brand name of any processed foods. The 
nutrient composition of recalled food items was deter-
mined employing the Argenfoods nutrient composition 
database and the United States Department of Agricul-
ture (USDA) database. Nutrient intake data were com-
puted utilizing the Automated Multiple-Pass Method 
(AMPM) (http://​www.​ars.​usda.​gov/​ba/​bhnrc/​fsrg). 
Numerous studies [25–27] have confirmed the effec-
tiveness of the AMPM in accurately estimating nutrient 
intake in adults. Folate intake was assessed in micro-
grams per day (μg/day).

BMD measurement
BMD indices were ascertained at various sites (lum-
bar spine and total femur, femoral neck, trochanter, and 
intertrochanter) deploying the Hologic QDR 4500A fan-
beam densitometer (Hologic Inc., Bedford, MA, USA) 
and the dual-energy X-ray absorptiometry (DXA) tech-
nique. The average BMD of the first through fourth lum-
bar vertebrae was employed to determine lumbar spine 
BMD. All DXA scan data were analyzed using Hologic 
APEX v3.0 software. In this study, the BMD indices at 

http://www.ars.usda.gov/ba/bhnrc/fsrg
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the total femur, femoral neck, trochanter, intertrochanter, 
and lumbar spine were evaluated.

Other covariates
Considering our study’s significant sample size, a metic-
ulous statistical analysis was required, necessitating a 
comprehensive adjustment for appropriate covariates. 
Various clinical data, identified as covariates, were incor-
porated due to their potential impact on the correlation 
between dietary folate intake and bone mineral density 
(BMD). These covariates were partitioned into four dis-
tinct categories. The first category, demographic data, 
included variables such as age, gender, ethnicity (Mexican 
American, other Hispanic, non-Hispanic white, non-His-
panic black, and other races), the ratio of family income 
to poverty (Poverty Income Ratio, PIR), and marital sta-
tus (Married/Cohabiting, Widowed/Divorced/Separated, 
or Never Married). The second category, laboratory data, 
composed of serum 25-hydroxyvitamin D [25(OH)D] 
and serum cotinine concentrations. The third category, 
examination data, included the body mass index (BMI). 

Lastly, the questionnaire data encapsulated physical 
activity, alcohol consumption, and hypertension status.

We further categorized the ratio of family income to 
poverty into three levels: low income (≤ 1.30), moder-
ate income (1.31–2.40), and high income (> 2.4) [28]. 
Physical activity (PA) was quantified using the meta-
bolic equivalent (MET) score as outlined on the official 
NHANES website. Subsequently, we defined physical 
activity as the total MET minutes per week, aggregated 
across all activity-related queries, and divided into very 
low PA (VLPA) (< 150 MET-min/week), low PA (LPA) 
(150–960 MET-min/week), medium PA (MPA) (961–
1800 MET-min/week), and high PA (HPA) (> 1800 MET-
min/week) [28]. Hypertension and alcohol consumption 
status were ascertained based on self-reported partici-
pant information. Through these comprehensive adjust-
ments, our study sought to mitigate possible bias and 
enhance the precision of the resulting data.

Statistical analysis
The baseline characteristics of study participants were 
presented in terms of mean ± standard deviation (SD) 
for continuous variables and percentages for categorical 

Fig. 1  Flowchart of participant selection
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variables. The study divided dietary folate intake into 
quartiles, and the consequent variances among these 
quartiles were evaluated using analysis of variance 
(ANOVA) for continuous variables and Chi-square anal-
ysis for categorical variables.

The relationship between dietary folate intake and 
bone mineral density (BMD) was assessed through mul-
tivariable linear regression models. In adherence to the 
Strengthening the Reporting of Observational Studies 
in Epidemiology guidelines [29], four distinct models 
were constructed. Model 1 incorporated no adjustment 
for covariates, Model 2 adjusted for fundamental demo-
graphic variables, Model 3 extended the adjustment to 
include variables that have previously demonstrated 
a strong correlation with BMD, and Model 4 made an 
additional adjustment for the biological indicator serum 
25-hydroxyvitamin D to control for potential nutritional 
confounders impacting BMD.

The dose–response relationship between dietary folate 
intake and BMD was further dissected through general-
ized additive model (GAM) smoothing curve fitting. This 
method facilitates the examination of nonlinear relation-
ships between outcome variables and risk factors, thereby 
assisting in the detection of threshold effects [30]. If a 
nonlinear correlation was discernible, a two-piecewise 
linear regression model (or a segmented regression 
model) was utilized to determine the threshold effect. A 
two-step recursive methodology was then employed to 
identify the breakpoint (K) that links the segments, rely-
ing on a maximum likelihood model [31, 32].

Acknowledging the heightened vulnerability of women, 
especially postmenopausal women, to osteoporosis and 
diminished BMD [33–35], we conducted subgroup analy-
sis stratified by premenopausal women, postmenopausal 
women, and men. Owing to the large and diverse sample 
size of our study, we further stratified the analyses based 
on race, physical activity, and serum 25(OH)D levels. We 
then constructed smoothed curve-fitting models in each 
population to explore the consistency of associations 
between dietary folate intake and BMD across popula-
tions. In the final stratified smoothed curve-fitting plots, 
due to the considerable quantity of strata, only estimated 
values were displayed, with confidence intervals omitted 
[36].

All statistical analyses were performed using the 
EmpowerStats statistical software (www.​empow​ersta​ts.​
com) and R software. The threshold for statistical signifi-
cance was set at a two-sided P value of < 0.05.

Results
Participant characteristics
Table 1 presents the demographic attributes of the study’s 
participants. The study incorporated 9839 individuals, 

with a mean age of 47.62 ± 16.22  years. The male par-
ticipants represented approximately 48.88% of the total 
sample. Non-Hispanic whites comprised 47.08% of the 
studied population, and around 63.95% of the subjects 
reported being married.

The average dietary folate intake among the partici-
pants was quantified as 401.1 ± 207.9  μg/day. The BMD 
values ascertained for the total femur, femoral neck, tro-
chanter, intertrochanter, and total spine were 0.98 g/cm2 
(range: 0.82–1.14 g/cm2), 0.84 g/cm2 (range: 0.69–0.99 g/
cm2), 0.73  g/cm2 (range: 0.60–0.86  g/cm2), 1.16  g/cm2 
(range: 0.97–1.35  g/cm2), and 1.03  g/cm2 (range: 0.88–
1.18 g/cm2), respectively.

A comparative analysis of the participants based on 
the quartiles of dietary folate intake revealed that the 
subjects within the higher quartiles (Q2–Q4) were gen-
erally younger than their counterparts in the first quar-
tile (Q1). Additionally, these higher quartiles exhibited 
a larger proportion of female participants and non-His-
panic whites. They also reported a higher family income 
and demonstrated lower prevalence rates of smoking 
and drinking. An increase in physical activity was also 
observed among these subjects, along with elevated con-
centrations of serum 25(OH)D. Furthermore, a lower 
incidence of hypertension was recorded among the indi-
viduals in the superior quartiles (Q2–Q4).

Relationship between dietary folate intake and BMD
Table  2 delineates the results of the linear correlation 
analysis between dietary folate intake and bone mineral 
density (BMD) at various skeletal sites, including the 
total femur, femoral neck, trochanter, intertrochanter, 
and lumbar spine. The unadjusted crude model indi-
cated a positive correlation between dietary folate intake 
and BMD levels (P trend < 0.001 for all). This correlation 
persisted even after adjusting for potential confounders 
such as age, gender, and race. Individuals in the highest 
quartile (Q4) of dietary folate intake exhibited a potent 
correlation with elevated BMD levels relative to those 
in the first quartile, as demonstrated in the multivari-
able model. Dietary folate intake in the highest quartile 
was significantly associated with BMD at the total femur 
(P for trend = 0.003), femoral neck (P for trend = 0.016), 
intertrochanter (P for trend < 0.001), and lumbar spine 
(P for trend = 0.033). These results underscore a robust 
association between dietary folate intake and BMD at 
multiple skeletal sites.

Dose–response relation and threshold effect analysis 
via generalized additive model
Given distinct variations in factors influencing BMD 
among premenopausal women, postmenopausal 
women, and men, we sought to elucidate the nonlinear 

http://www.empowerstats.com
http://www.empowerstats.com
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Table 1  Characteristics of the participant

Dietary folate intake: Q1: < 260.5 μg/day; Q2: 260.5–359.5 μg/day; Q3: 360.0–492.0 μg/day; > 492.5 μg/day

Mean dietary folate intake: Total: 401 μg/day; Q1: 193.6 μg/day; Q2: 309.5 μg/day; Q3: 419.6 μg/day; Q4: 680.8 μg/day

Continuous variables were presented as mean ± SE. Categorical variables were presented as n (%). SD: standard deviation; MET: metabolic equivalent; BMD bone 
mineral density; Physical activity: Very Low PA (VLPA) (< 150 MET-min/week), Low PA (LPA) (150–960 MET-min/week), Medium PA (MPA) (961–1800MET-min/week) and 
High PA (HPA) (> 1800 MET-min/week)

Characteristics Total population 
(n = 9839)

Dietary folate intake (quartile) P value

Q1 (n = 2455) Q2 (n = 2463) Q3 (n = 2455) Q4 (n = 2466)

Age 47.62 ± 16.22 48.95 ± 16.49 49.03 ± 16.47 46.81 ± 15.83 45.69 ± 15.84  < 0.001

Gender  < 0.001

 Male 4809 (48.88%) 1565 (63.75%) 1348 (54.73%) 1132 (46.11%) 764 (30.98%)

 Female 5030 (51.12%) 890 (36.25%) 1115 (45.27%) 1323 (53.89%) 1702 (69.02%)

Race  < 0.001

 Mexican American 1845 (18.75%) 455 (18.53%) 486 (19.73%) 467 (19.02%) 437 (17.72%)

 Other Hispanic 902 (9.17%) 216 (8.80%) 236 (9.58%) 236 (9.61%) 214 (8.68%)

 Non-Hispanic white 4632 (47.08%) 1022 (41.63%) 1143 (46.41%) 1166 (47.49%) 1301 (52.76%)

 Non-Hispanic black 1853 (18.83%) 629 (25.62%) 467 (18.96%) 431 (17.56%) 326 (13.22%)

 Other race 607 (6.17%) 133 (5.42%) 131 (5.32%) 155 (6.31%) 188 (7.62%)

Family income-poverty ratio  < 0.001

  < 1.3 2518 (27.52%) 767 (34.01%) 599 (26.19%) 576 (25.12%) 576 (24.87%)

 1.3–2.4 3426 (37.44%) 890 (39.47%) 889 (38.87%) 875 (38.16%) 772 (33.33%)

  ≥ 2.4 3207 (35.05%) 598 (26.52%) 799 (34.94%) 842 (36.72%) 968 (41.80%)

Marital status  < 0.001

 Married/cohabiting 6288 (63.95%) 1429 (58.23%) 1546 (62.82%) 1641 (66.87%) 1672 (67.86%)

 Widowed/divorced/separated 1908 (19.40%) 591 (24.08%) 540 (21.94%) 412 (16.79%) 365 (14.81%)

 Never married 1637 (16.65%) 434 (17.69%) 375 (15.24%) 401 (16.34%) 427 (17.33%)

Body mass index  < 0.001

  < 18.5 3096 (31.56%) 727 (29.71%) 745 (30.35%) 758 (30.93%) 866 (35.26%)

 18.5–30 3656 (37.27%) 865 (35.35%) 931 (37.92%) 926 (37.78%) 934 (38.03%)

  > 30 3057 (31.17%) 855 (34.94%) 779 (31.73%) 767 (31.29%) 656 (26.71%)

Hypertension  < 0.001

 No 7482 (81.15%) 1789 (78.57%) 1830 (79.77%) 1921 (82.98%) 1942 (83.20%)

 Yes 1738 (18.85%) 488 (21.43%) 464 (20.23%) 394 (17.02%) 392 (16.80%)

Physical activity  < 0.001

 VLPA 2259 (23.42%) 716 (29.62%) 622 (25.71%) 508 (21.12%) 413 (17.17%)

 LPA 2165 (22.44%) 540 (22.34%) 579 (23.94%) 559 (23.24%) 487 (20.24%)

 MPA 1307 (13.55%) 321 (13.28%) 315 (13.02%) 326 (13.56%) 345 (14.34%)

 HPA 3916 (40.59%) 840 (34.75%) 903 (37.33%) 1012 (42.08%) 1161 (48.25%)

Alcohol intake  < 0.001

 No 7083 (73.08%) 1607 (66.27%) 1740 (71.66%) 1826 (75.64%) 1910 (78.76%)

 Yes 2609 (26.92%) 818 (33.73%) 688 (28.34%) 588 (24.36%) 515 (21.24%)

Serum cotinine (ng/mL) 59.02 ± 128.79 73.95 ± 143.21 57.29 ± 126.00 53.68 ± 123.82 51.26 ± 119.85  < 0.001

Total Serum 25(OH)D (nmol/L) 62.50 ± 24.69 58.82 ± 25.18 62.11 ± 25.27 63.51 ± 24.56 65.56 ± 23.21  < 0.001

Total femur BMD (g/cm2) 0.98 ± 0.16 0.96 ± 0.16 0.96 ± 0.16 0.99 ± 0.16 1.00 ± 0.15  < 0.001

Femoral neck BMD (g/cm2) 0.84 ± 0.15 0.83 ± 0.15 0.83 ± 0.15 0.85 ± 0.15 0.86 ± 0.15  < 0.001

Trochanter BMD (g/cm2) 0.73 ± 0.13 0.72 ± 0.13 0.72 ± 0.13 0.74 ± 0.13 0.76 ± 0.13  < 0.001

Intertrochanter BMD (g/cm2) 1.16 ± 0.19 1.13 ± 0.19 1.14 ± 0.19 1.17 ± 0.18 1.19 ± 0.18  < 0.001

Total spine BMD (g/cm2) 1.03 ± 0.15 1.03 ± 0.16 1.02 ± 0.15 1.04 ± 0.15 1.04 ± 0.14  < 0.001
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Table 2  The association between dietary folate intake and BMD

Model 1 Crude model

Model 2 Adjusted for age, sex, race, PIR, and marital status

Model 3 Adjusted for age, sex, race, PIR, marital status, BMI, hypertension, serum cotinine, physical activity, and alcohol use

Model 4 Adjusted for age, sex, race, PIR, marital status, BMI, hypertension, serum cotinine, physical activity, alcohol use, and total vitamin D

MET Metabolic equivalent, BMD Bone mineral density

Dietary 
folate intake 
(quintile)

Model 1 Model 2 Model 3 Model 4

β (95% CI) P value β (95% CI) P value β (95% CI) P value β (95% CI) P value

Total femur, gm/cm2

 Q1 Reference Reference Reference Reference

 Q2 0.006 (− 0.003, 0.015) 0.180  − 0.002 (− 0.010, 
0.006)

0.636  − 0.002 (− 0.010, 
0.006)

0.597  − 0.003 (− 0.010, 
0.005)

0.519

 Q3 0.032 (0.023, 0.041)  < 0.001 0.009 (0.001, 0.017) 0.024 0.008 (0.000, 0.016) 0.038 0.007 (− 0.001, 0.015) 0.092

 Q4 0.046 (0.038, 0.055)  < 0.001 0.008 (− 0.000, 0.016) 0.051 0.011 (0.003, 0.019) 0.010 0.010 (0.002, 0.018) 0.017

 P trend  < 0.001 0.011 0.001 0.003

Femoral neck, gm/cm2

 Q1 Reference Reference Reference Reference

 Q2 0.001 (− 0.008, 0.009) 0.891  − 0.002 (− 0.009, 
0.006)

0.681  − 0.002 (− 0.010, 
0.005)

0.596  − 0.002 (− 0.010, 
0.006)

0.595

 Q3 0.022 (0.013, 0.030)  < 0.001 0.007 (− 0.001, 0.014) 0.080 0.005 (− 0.002, 0.013) 0.164 0.004 (− 0.004, 0.012) 0.285

 Q4 0.030 (0.022, 0.039)  < 0.001 0.007 (− 0.001, 0.015) 0.071 0.008 (0.001, 0.016) 0.035 0.008 (− 0.000, 0.016) 0.052

 P trend  < 0.001 0.022 0.009 0.016

Trochanter, gm/cm2

 Q1 Reference Reference Reference

 Q2  − 0.003 (− 0.011, 
0.006)

0.528  − 0.005 (− 0.013, 
0.004)

0.285  − 0.004 (− 0.013, 
0.004)

0.316  − 0.004 (− 0.013, 
0.005)

0.415

 Q3 0.012 (0.004, 0.020) 0.005 0.003 (− 0.005, 0.012) 0.448 0.004 (− 0.005, 0.013) 0.354 0.005 (− 0.004, 0.014) 0.296

 Q4 0.018 (0.009, 0.026)  < 0.001 0.003 (− 0.006, 0.011) 0.563 0.004 (− 0.005, 0.014) 0.332 0.005 (− 0.004, 0.014) 0.267

 P trend  < 0.001 0.276 0.132 0.109

Intertrochanter, gm/cm2

 Q1 Reference Reference Reference Reference

 Q2 0.006 (− 0.001, 0.013) 0.100  − 0.001 (− 0.008, 
0.006)

0.839  − 0.001 (− 0.008, 
0.006)

0.763  − 0.002 (− 0.009, 
0.005)

0.666

 Q3 0.027 (0.020, 0.035)  < 0.001 0.010 (0.003, 0.017) 0.005 0.008 (0.001, 0.015) 0.017 0.007 (− 0.000, 0.014) 0.050

 Q4 0.040 (0.033, 0.047)  < 0.001 0.010 (0.003, 0.017) 0.005 0.011 (0.004, 0.018) 0.003 0.011 (0.003, 0.018) 0.004

 P trend  < 0.001 0.001 0.000 (0.000, 0.000) 0.000 0.000

Total spine area, gm/cm2

 Q1 Reference Reference Reference Reference

 Q2 0.005 (− 0.005, 0.016) 0.304  − 0.004 (− 0.014, 
0.005)

0.360  − 0.004 (− 0.013, 
0.005)

0.365  − 0.005 (− 0.014, 
0.004)

0.291

 Q3 0.034 (0.024, 0.044)  < 0.001 0.007 (− 0.002, 0.017) 0.140 0.007 (− 0.003, 0.016) 0.165 0.005 (− 0.005, 0.014) 0.320

 Q4 0.050 (0.040, 0.060)  < 0.001 0.005 (− 0.005, 0.015) 0.318 0.009 (− 0.001, 0.018) 0.073 0.008 (− 0.002, 0.017) 0.128

 P trend  < 0.001 0.117 0.016 0.033

Fig. 2  Relationship between dietary folate intake and BMD in postmenopausal women (A), premenopausal women (B) and men (C), 1 total femur, 
2 femoral neck, 3 intertrochanter, 4 trochanter, 5 lumbar spine. The number of postmenopausal women = 2293; premenopausal women = 2516; 
men = 5030. Solid red line represents the smooth curve fit between variables according to GAM. Blue bands represent the 95% of confidence 
interval from the fit. Y-axis represents BMD content, and x-axis represents dietary folate intake. Models were adjusted for age, race, PIR, marital status, 
BMI, hypertension, serum cotinine, alcohol drinking status, PA, and 25(OH)D

(See figure on next page.)
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Fig. 2  (See legend on previous page.)
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dose–response correlation among these groups, as delin-
eated in Fig.  2A–C. The GAM smoothing curve fitting 
offers an expansive analytical framework by transforming 

coefficients into smooth functions of covariates, thereby 
efficaciously appraising interactions among factors with-
out the pitfalls of underfitting or overfitting. This model 
surpasses the limitations of linear regression models, 
which typically postulate a specific functional relation-
ship, such as linearity, between variables. In this context, 
the GAM does not enforce a preordained relationship 
between dietary folate intake and BMD, potentially lead-
ing to a superior fit [30].

Figure 2B and C exhibits a significant positive correla-
tion between BMD and dietary folate intake in both male 
and premenopausal female populations, albeit with cer-
tain notable variances. Upon adjusting for potential con-
founding variables, total femur BMD in males displayed a 
greater sensitivity to folate intake compared to premeno-
pausal females. However, a weak negative correlation was 
observed between folate intake and femoral neck BMD 
in premenopausal females, a pattern that diverges from 
other femoral regions. Moreover, lumbar spine BMD in 
premenopausal females indicated a significant increase 
only when daily folate intake surpassed 800 µg.

Figure  2A and Table  3 suggest that the positive cor-
relation between dietary folate intake and lumbar spine 
BMD in postmenopausal women was not significant. 
Intriguingly, an inverted U-shaped relationship was per-
ceived between folate intake and BMD in various femur 
regions in postmenopausal women. This observation was 
further scrutinized using a two-piecewise linear model 
to ascertain threshold effects. The inflection points for 
total femur BMD, femoral neck BMD, trochanter BMD, 
and intertrochanter BMD were determined to be 566, 
569, 528, and 566 µg per day, respectively. For instance, 
for total femur BMD, a daily folate intake beyond 566 µg 
might precipitate a decline in BMD (Table 3).

Further subgroup analysis
Subgroup analysis, stratified by age as shown in Fig.  3, 
unveiled a significant positive correlation between die-
tary folate intake and BMD levels in participants aged 
80  years and older (P = 0.014). This intriguing finding 
suggests that this demographic may derive a greater ben-
efit from increasing their dietary folate intake to maintain 
optimal bone health. In contrast, spinal BMD displayed a 
negative correlation in individuals aged between 20 and 
40  years, the underlying reasons for which warrant fur-
ther investigation.

The subgroup analysis stratified by ethnicity is eluci-
dated in Fig.  4. A notable finding is the positive rela-
tionship between increased dietary folate intake and 
elevated BMD across ethnic groups, including non-
Hispanic whites, blacks, Mexican Americans, and other 
Hispanics. The most pronounced BMD elevations were 
observed among non-Hispanic whites, suggesting 

Table 3  Threshold effect analysis of dietary folate intake and 
BMD in postmenopausal women

Adjusted for age, gender, race, marital status, PIR, BMI, alcohol consumption, PA, 
history of hypertension, serum cotinine and serum vitamin D

BMD Bone mineral density

Threshold effect analysis of dietary folate intake and BMD in 
postmenopausal women

Adjusted HR (95% CI), P value

Total femur BMD

Fitting by the standard linear model 0.00 (− 0.00, 0.00) 0.267

Fitting by the two-piecewise linear 
model

Inflection point 566 μg/day

Dietary folate intake < Inflection point 0.00 (0.00, 0.00) 0.013

Dietary folate intake > Inflection point  − 0.00 (− 0.00, 0.00) 0.092

P for log-likelihood ratio 0.017

Femoral neck BMD

Fitting by the standard linear model 0.00 (− 0.00, 0.00) 0.505

Fitting by the two-piecewise linear 
model

Inflection point 569 μg/day

Dietary folate intake < Inflection point 0.00 (− 0.00, 0.00) 0.053

Dietary folate intake > Inflection point  − 0.00 (− 0.00, 0.00) 0.115

P for log-likelihood ratio 0.040

Trochanter BMD

Fitting by the standard linear model 0.00 (− 0.00, 0.00) 0.384

Fitting by the two-piecewise linear 
model

Inflection point 528 μg/day

Dietary folate intake < Inflection point 0.00 (0.00, 0.00) 0.004

Dietary folate intake > Inflection point  − 0.00 (− 0.00, − 0.00) 0.024

P for log-likelihood ratio 0.003

Intertrochanter BMD

Fitting by the standard linear model 0.00 (− 0.00, 0.00) 0.337

Fitting by the two-piecewise linear 
model

Inflection point 566 μg/day

Dietary folate intake < Inflection point 0.00 (0.00, 0.00) 0.042

Dietary folate intake > Inflection point  − 0.00 (− 0.00, 0.00) 0.189

P for log-likelihood ratio 0.057

Total spine BMD

Fitting by the standard linear model 0.00 (− 0.00, 0.00) 0.350

Fitting by the two-piecewise linear 
model

Inflection point 249.5 μg/day

Dietary folate intake < inflection point 0.00 (− 0.00, 0.00) 0.446

Dietary folate intake > inflection point 0.00 (− 0.00, 0.00) 0.633

P for log-likelihood ratio 0.564
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potential benefits from adequate daily folate supple-
mentation in this group. Conversely, the “Other Race—
Including Multi-Racial” groups exhibited an inverse 
relationship between folate intake and BMD, although 
this negative trend may be unreliable due to the small 
sample size and inclusion of multiple races. Remarka-
bly, blacks exhibited higher BMD levels than other eth-
nic groups across all regions, emphasizing the necessity 
to consider ethnic-specific differences in the pathogen-
esis and management of bone health disorders.

Figure  5 displays the results of the subgroup analy-
sis stratified by physical activity level. The multivariate 
regression analysis, which accounted for all covariates, 
showed a positive relationship between dietary folate 
intake and BMD levels in individuals with high (HPA) 
and moderate (MPA) physical activity. However, among 
individuals with low physical activity (LPA), a negative 
correlation between folate intake and BMD levels in the 
lumbar spine region was observed. Furthermore, par-
ticipants with very low physical activity (VLPA) exhib-
ited a nonlinear decreasing trend in BMD levels with 
increasing folate intake. These results have significant 

clinical implications, suggesting that the interaction 
between folate intake and BMD levels is influenced by 
physical activity levels. Consequently, individuals with 
LPA and VLPA may require additional interventions to 
optimize their bone health, such as increasing physical 
activity levels and/or adjusting dietary folate intake.

Figure  6 presents the results of the subgroup analy-
sis stratified by 25(OH)D levels. After adjusting for 
other confounding variables, the findings indicate that 
an elevated intake of folate is associated with increased 
BMD levels in the total femur, femoral neck, and inter-
trochanteric region. Interestingly, participants with 
serum 25(OH)D levels greater than 76.5  nmol/L (Q4) 
and between 60.4 and 76.5  nmol/L (Q3) displayed a 
negative association between folate intake and BMD 
levels in the lumbar spine. Further research is merited 
to elucidate the underlying mechanisms of this asso-
ciation. Importantly, the lumbar spine results suggest 
a potential interaction effect between serum 25(OH)
D concentrations and folate intake, as BMD levels in 
the high 25(OH)D group exhibit an inverse correlation 
with folate intake. This finding underscores the need 

Fig. 3  Relationship between dietary folate intake and BMD in different ages, A total femur, B femoral neck, C intertrochanter, D trochanter, E lumbar 
spine. The red line represents 20–39 years old; the green line represents 40–59 years old; the blue line represents 59–79 years old; and the purple 
line represents greater than or equal to 80 years old. Y-axis represents BMD content, and x-axis represents dietary folate intake. Models were 
adjusted for age, gender, race, PIR, marital status, BMI, hypertension, serum cotinine, alcohol drinking status, PA, and serum 25(OH)D
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for further investigation into the complex interplay 
between dietary folate intake, serum 25(OH)D levels, 
and bone health.

Discussion
This study provides a comprehensive investigation into 
the intricate relationship between dietary folate intake 
and BMD levels. The study unveils a substantial and per-
vasive positive correlation between dietary folate intake 
and BMD levels. Moreover, our subgroup analyses sug-
gest that this correlation is influenced by several factors 
including menopausal status, sex, serum 25-hydroxyvita-
min D [25(OH)D] levels, physical activity, age, and race, 
thereby enriching our understanding of the complex 
interplay between dietary folate intake and BMD levels.

Both low BMD and osteoporosis are pervasive public 
health issues, leading to considerable economic burden 
and diminished quality of life. Folate, also recognized as 
vitamin B9, plays a crucial role in human health and car-
ries multiple benefits for various physiological systems, 
including the nervous and skeletal systems [37–39]. It 

has been demonstrated that folate intervention can sig-
nificantly enhance bone microstructure in high-fat diet 
(HFD) mice [40, 41]. Folate supplementation resulted in a 
decrease in osteoclast count in HFD-fed mice while aug-
menting the number of adipocytes, suggesting that folate 
may regulate lipid metabolism and impact the onset of 
osteoporosis [11].

Long-term folate deficiency can instigate obesity, lipid 
metabolism disorders, and glucose metabolism disorders, 
while appropriate folate intake can mitigate the risk of 
dyslipidemia [42, 43]. Moreover, osteoporosis and osteo-
porotic fractures have been linked to folate deficiency 
and hyperhomocysteinemia [44–46], a metabolic prod-
uct of the essential amino acid methionine. Folate serves 
as a critical coenzyme for homocysteine degradation 
through remethylation and transsulfuration pathways, 
and hence, folate deficiency can cause a surge in serum 
homocysteine concentration (hyperhomocysteinemia). 
Furthermore, folate plays an essential role in reducing 
oxidative stress and protein methylation [47], which in 
turn decreases the incidence of osteoporosis by directly 

Fig. 4  Relationship between dietary folate intake and BMD in different races, A total femur, B femoral neck, C intertrochanteric, D trochanter, E 
lumbar spine. The red line represents Mexican American, the yellow line represents other Hispanic, the green line represents non-Hispanic white, 
the blue line represents non-Hispanic black, and the purple line represents Other Race—Including Multi-Racial. Y-axis represents BMD content, 
and x-axis represents dietary folate intake. Models were adjusted for age, gender, PIR, marital status, BMI, hypertension, serum cotinine, alcohol 
drinking status, PA, and serum 25(OH)D
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eliminating and stimulating the expression of antioxidant 
enzymes [10].

The current body of research on the relationship 
between dietary folate intake and BMD is somewhat 
limited. While a number of studies have investigated the 
association between other B vitamins, homocysteine, and 
bone health, few have specifically examined the associa-
tion between dietary folate intake and BMD in the gen-
eral population. Furthermore, some of these studies may 
be constrained by inadequate sample sizes, limiting the 
capacity to draw definitive conclusions about the rela-
tionship between dietary folate intake and BMD in the 
general population [48–50].

Furthermore, in certain populations, such as those 
with Very Low Physical Activity (VLPA), the relation-
ship between dietary folate intake and BMD levels dem-
onstrated an inverse correlation. Various explanations 
for this finding exist. Notably, physical exercise has been 
shown to counteract, delay, and mitigate the adverse 
effects of osteoporosis [51]. Exercise can also decrease 
bone resorption [52] and augment BMD [53]. In premen-
opausal women and individuals aged 20–40, an increase 

in folate intake was associated with a decrease in lumbar 
BMD levels. However, the underlying reasons and mech-
anisms for this phenomenon remain unknown.

Folate can promote the growth and differentiation 
of bone cells, increase bone formation, and reduce the 
occurrence of osteoporosis. This is because folate plays a 
pivotal role in DNA synthesis and repair, gene expression 
regulation, and consequently, bone cell growth and dif-
ferentiation [54]. However, in some specific populations, 
an increase in folate intake does not necessarily lead to an 
increase in BMD. This may be because excessive intake 
of folate can interfere with the body’s absorption of other 
vital nutrients, such as calcium, magnesium, and 25(OH)
D, thereby affecting BMD. Therefore, the effect of folate 
on BMD may be influenced by the overall nutrient bal-
ance in the body.

This research boasts several noteworthy strengths. 
Firstly, it utilizes a large, nationally representative data-
set, gathered through standardized protocols, which 
minimizes potential biases. Secondly, the study diligently 
categorizes folate intake levels into quartiles and tests for 
linear trends, thereby assuring robust and accurate data 

Fig. 5  Relationship between dietary folate intake and BMD in people with different PA levels, A total femur, B femoral neck, C intertrochanter, D 
trochanter, E lumbar spine. The red line represents VLPA, the green line represents LPA, the blue line represents MPA, and the purple line represents 
HPA. Y-axis represents BMD content, and x-axis represents dietary folate intake. Models were adjusted for age, gender, race, PIR, marital status, BMI, 
hypertension, serum cotinine, alcohol drinking status, PA, and serum 25(OH)D
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interpretation. Thirdly, this research effectively accounts 
for potential confounding variables while evaluating the 
correlation between dietary folate intake and BMD levels, 
as well as the variations in osteoporosis risk among differ-
ent populations stratified by menopausal status, gender, 
25(OH)D, physical activity, age, and race. Additionally, 
the study employs a versatile generalized additive model 
to explore potential nonlinear trends and conducts a 
threshold effects analysis to investigate the optimal die-
tary folate intake for postmenopausal women. Given the 
apparent inverted U-shaped relationship between BMD 
in the femur of postmenopausal women and folate intake, 
the study suggests that daily dietary folate intake for 
postmenopausal women should not exceed 528–569  µg 
per day for optimal bone health.

Notwithstanding our study’s valuable insights, there 
are some potential limitations that should be acknowl-
edged. Firstly, as a cross-sectional analysis, the evidence 
for causality may be limited due to the lack of tempo-
ral sequence. Thus, further longitudinal studies are 

warranted to explore the potential causality between die-
tary folate intake and BMD levels. Secondly, the data col-
lected from self-reported questionnaires and interviews 
may introduce recall bias, which may affect the accuracy 
of the data. Thirdly, although we adjusted for several 
potential confounding variables, some other unmeasured 
confounding factors may have influenced our results. 
Therefore, future studies should consider these factors 
and conduct more in-depth analyses to confirm our 
findings.

Conclusions
In conclusion, this study provides valuable insights into 
the correlation between dietary folate intake and BMD 
levels in the general US population. It underscores the 
significance of dietary folate intake for bone health and 
highlights the potential implications of personalized 
dietary interventions for the prevention and manage-
ment of osteoporosis. However, further research is war-
ranted to elucidate the complex mechanisms underlying 

Fig. 6  Relationship between dietary folate intake and BMD in people with different serum 25(OH)D, A total femur, B femoral neck, C 
intertrochanter, D trochanter, E lumbar spine. The red line represents 25(OH)D levels greater than 76.5 nmol/L, the green line represents 
between 25(OH)D levels 60.4 and 76.5 nmol/L, the blue line represents 25(OH)D levels between 44.7 and 60.4 nmol/L, and the purple line 
represents 25(OH)D levels less than 44.7 nmol/L. Y-axis represents BMD content, and x-axis represents dietary folate intake. Models were adjusted 
for age, gender, race, PIR, marital status, BMI, hypertension, serum cotinine, alcohol drinking status, PA, and serum 25(OH)D
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the relationship between dietary folate intake and BMD 
and to validate the findings in diverse populations and 
settings.
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