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Abstract 

Background  Observational studies can suggest potential associations between variables but cannot establish 
a causal effect on their own. This study explored the causal associations between body mass index (BMI), physical 
activity (PA), and joint sports injuries.

Methods  We conducted two-sample Mendelian randomization (MR) using publicly accessed genome-wide asso-
ciation studies (GWAS) datasets to investigate the causal effects of BMI and PA on joint sports injury risk. The inverse-
variance weighted method was believed to be the primary MR analysis. Subsequently, sensitivity, pleiotropy, and het-
erogeneity analyses were employed to estimate the reliability of the results of the current research.

Results  Genetically predicted increased BMI was causally related to the higher sports injury risk of the ankle–foot (OR 
1.23, 95% CI 1.09–1.37, p = 4.20E−04), knee (OR 1.32, 95% CI 1.21–1.43, p = 1.57E−11), and shoulder (OR 1.23, 95% CI 
1.08–1.40, p = 1.28E−03). Further, the mentioned effects were validated using another set of GWAS data on BMI. Similar 
causal linkages were exhibited between increased BMI and the growing risk of sports injuries of the ankle–foot (OR 
1.34, 95% CI 1.13–1.60, p = 9.51E−04), knee (OR 1.26, 95% CI 1.09–1.45, p = 1.63E−03), and shoulder (OR 1.35, 95% CI 
1.09–1.67, p = 5.66E−03). Additionally, accelerometer-based PA measurement (overall average acceleration) (AccAve) 
was negatively related to sports injuries of the ankle–foot (OR 0.93, 95% CI 0.87–0.99, p = 0.046) and lumbar spine (OR 
0.68, 95% CI 0.51–0.92, p = 0.012). Furthermore, we verified that the effect of AccAve on the risk of injury at the ankle–
foot still had statistical significance after adjusting BMI. Results were verified as reliable under all sensitive analyses.

Conclusions  This research determined that a higher BMI could raise the sports injury risk of the ankle–foot, knee, 
and shoulder, while an overall average acceleration PA could reduce the injury risk of the ankle–foot and lumbar 
spine. These conclusions contribute to a greater knowledge of the roles of BMI and PA in the mechanism of joint 
sports injuries and offer several suggestions for patients and clinicians.
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Introduction
People all around the world love doing sports as hobbies, 
exercises, and ways to stay healthy. However, compared 
to transportation-related injuries, home and recreational 
accidents, and work-related damages, sports are among 
the leading causes of joint injuries [1–3]. Minor sports-
related joint injuries, including dislocation, sprain, and 
strain, are the most commonly reported [4]. Some fac-
tors, including intrinsic factors like BMI, age, and gender, 
and extrinsic risk factors, such as the type of sport prac-
ticed and physical activity, could affect the risk of a joint 
injury [5]. Determining the risk factors for sports-related 
joint injuries might assist patients and caregivers in bet-
ter understanding the etiology and developing care and 
treatment recommendations.

Body mass index (BMI), which serves as a surrogate 
indicator for obesity, has been a remarkable risk fac-
tor for sports injuries of the joints, such as ankle sprains 
and strains. Observational studies have reported that an 
increased BMI is correlated with a greater risk of sports 
injury [6–9]. Despite this, it should be recognized that 
the constraints of conventional study approaches, notably 
underlying confounders or reverse causalities, prevented 
rigorous confirmation of the correlations [10].

Mendelian randomization (MR) analyses can be an 
ideal strategy to address these constraints [11]. This 
method takes advantage of instrumental variants (IVs) as 
proxies for exposures (e.g., disease, lifestyle), which can 
be conducive to overcoming the constraints of observa-
tional studies. Therefore, MR analyses are an effective 
approach for enhancing causal inference. PA is an essen-
tial factor that should not be ignored in joint sports inju-
ries [5]. The occurrence rate of sports injuries to the ankle 
varied depending on the intensity of PA [12–14]. Never-
theless, the role of BMI and PA in sports injuries of other 

joints and whether PA mediates the correlation between 
BMI and joint injury have not been fully illustrated.

To address this issue, we first performed a two-sample 
Mendelian randomization analysis to explore the causal 
effect of BMI and PA on the risk of 13 different types of 
joint injury in sports. Then, multivariate MR was imple-
mented to verify the causal effect of physical activity on 
the susceptibility to joint injury, adjusting for potential 
pleiotropy. With robust IVs, the MR method is less vul-
nerable to confounders and reverse causalities, which 
could interfere with the findings compared to conven-
tional research.

Methods
Study design
This research employed a two-sample MR analysis to 
explore the causal effect of BMI on joint sports injuries. 
Figure 1 presents a graphical diagram of the study design 
strategy; that is, the analysis process must meet three 
basic requirements: (A) IVs must be robustly linked to the 
exposure (BMI, PA); (B) IVs are supposed to be isolated 
from any potential confounders; and (C) SNPs must be 
linked to the risk of outcomes (joint sports injuries) only 
via exposure (BMI, PA). All datasets utilized for analysis 
are summary-level GWAS and publicly available. Ethical 
approvals and informed consent are also fully qualified by 
their corresponding institutions. Ultimately, this research 
report complies with the STROBE-MR guideline, which 
is beneficial for peer evaluation and result interpretation 
[15].

Data sources and selection of IVs
For exploring the causal relationship between BMI and 
joint injuries, data available for adult BMI was acquired 
from the currently largest GWAS for BMI from the 

Fig. 1  Three basic presumptions of the MR study. A The IVs must be correlated with the exposures (BMI or PA). B IVs must be entirely unconnected 
with confounders, and C IVs should not be directly linked to the outcomes (joint sports injuries). MR Mendelian randomization, IVs instrumental 
variables, BMI body mass index, PA physical activity
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Genetic Investigation of Anthropometric Traits (GIANT) 
consortium (https://​porta​ls.​broad​insti​tute.​org/​colla​borat​
ion/​giant/​index.​php/​GIANT_​conso​rtium), which con-
tains samples of 681,275 European populations [16]. Out-
come data for various body parts of sports injuries, such 
as dislocation, sprain, and strain, were extracted from the 
FinnGen [17], which can be easily accessed via the IEU 
Open GWAS Project (https://​gwas.​mrcieu.​ac.​uk/). Fur-
ther details regarding the exposure and outcomes were 
provided in Additional file 1: Table S1.

We selected two sets of BMI-associated IVs: one con-
tained 656 primary genome-wide significant (p < 5 × 10−8) 
genetic variants, and the other group contained 77 IVs 
that did not overlap with the first one based on previ-
ously published studies [16, 18] (Additional file 1: Tables 
S2 and S3).

A large GWAS involving 377,234 individuals from the 
UK Biobank yielded exposure data on physical activi-
ties [19]. In their research, an accelerometer worn on the 
wrist or a questionnaire was employed for estimating PA 
intensity [20]. Four phenotypes of PA from their study 
were investigated, including moderate-to-vigorous physi-
cal activity (MVPA), vigorous physical activity (VPA), 
accelerometer-based physical activity measurement 
(overall average acceleration) (AccAve), and 2–3  days/
week or more in doing strenuous sports or other exer-
cises for 15–30  min or greater (SSOE) [19]. Detailed 
information such as overall sample size, resource link, 
and number of SNPs was exhibited in Additional file  1: 
Table S1.

Then, these IVs associated with four PA phenotypes 
at genome-wide significance (p < 5E−08) throughout the 
genome were clumped and harmonized in R (version 
4.2.1) utilizing the TwoSampleMR package (version 0.5.6) 
[21]. SNPs were removed during analysis when their link-
age disequilibrium (LD) was consistent with r2 > 0.01 and 
clumping distance < 10,000. Beyond that, proxy SNPs 
serve as substitutes for those SNPs that are palindromic 
with intermediate allele frequencies [22]. To avoid weak 
instrumental bias, the F statistic was used to determine 
the strength of each IV. If F > 10, it can be considered that 
the association between IVs and exposure is effective, 
and the MR results are not affected by weak instrumen-
tal bias [23]. Finally, details of the SNPs selected as IVs 
for BMI and PA were provided in Additional file 1: Tables 
S2–S3, S16, respectively.

MR analysis
Following harmonization of the effect alleles across the 
GWAS data of BMI, PA, and joint injuries, we conducted 
five methods of MR analysis to identify the causal effect 
of BMI and PA on joint injuries, which are inverse vari-
ance weight (IVW), weighted median, MR-Egger, simple 

mode, and weighted mode. The IVW was considered 
the main outcome because this method assumes that 
IVs affect the outcome only via exposure and not in any 
other way [24]. Moreover, the MR-Egger and weighted 
median methods provide more modest estimated values 
under a more permissive assumption but with low preci-
sion (broader CIs). In this study, it was considered that 
there was a causal effect when all those MR approaches 
were consistent in direction. To address multiple testing, 
a Bonferroni-corrected p value of 0.00384 (i.e., 0.05/13 
putative outcomes) was regarded as significant, and p 
values between 0.00384 and 0.05 were defined as nominal 
significance.

Sensitivity analysis
Complying with the MR study design strategy, the IVs 
affect outcomes only via exposure. The estimated values 
may be inaccurate if the SNPs used as IVs have horizontal 
pleiotropy. To detect this, the intercept contained in the 
MR-Egger method must be markedly different from 0, as 
well as the visual observation of the funnel plot, in which 
asymmetry represents horizontal pleiotropy [24, 25]. 
Simultaneously, the MR Pleiotropy Residual Sum and 
Outlier (MR-PRESSO) method was also conducted to 
check and rectify horizontal pleiotropy [26]. Eventually, 
Cochran’s Q test was implemented to determine whether 
there was heterogeneity in each IV [27].

Results
Genetically predicted increased BMI and joint sports 
injuries
Additional file  1: Table  S13 exhibited the selected IVs 
strongly associated with an increased BMI, which were 
derived from the recent study by Yengo et al. [16]. Results 
showed that increased BMI was significantly correlated 
with dislocation, sprain, and strain of joints and liga-
ments (called together “sports injury,” the same below) 
at ankle–foot level (IVW: OR 1.23, 95% CI 1.09–1.37, 
p = 4.20E−04), the knee (IVW: OR 1.32, 95% CI 1.21–
1.43, p = 1.57E−11), and shoulder girdle (IVW: OR 1.23, 
95% CI 1.08–1.40, p = 1.28E−03). Additionally, a nominal 
significance was revealed after analyzing the correlation 
between BMI and sports injury at the neck level (IVW: 
OR 1.22, 95% CI 1.02–1.47, p = 0.030) (Fig.  2). Detailed 
information on each MR analysis was provided in Addi-
tional file  1: Tables S4–S7. No evidence was found of 
directional pleiotropy through the MR-Egger intercept 
scatter plot or the funnel plot (Additional file  2: Figs. 
S1–S4). In the MR-PRESSO global test, p = 0.021, when 
analyzing the association between BMI and ankle injury, 
two SNPs were identified as outliers (rs2230590 and 
rs12364470). MR-PRESSO outlier-corrected estimates 

https://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium
https://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium
https://gwas.mrcieu.ac.uk/
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stayed in accordance with the original analysis (Addi-
tional file 1: Table S14).

For further confirmation of the results, another BMI 
GWAS obtained from the study by Locke et al. [18] was 
implemented to validate the causal effect of BMI on the 
risk of joint injuries. Significant effects were revealed 
for increased BMI on sports injury risk of ankle–foot 
(IVW: OR 1.34, 95% CI 1.13–1.60, p = 9.51E−04), knee 
(IVW: OR 1.26, 95% CI 1.09–1.45, p = 1.63E−03). Addi-
tionally, a nominal significant causal effect was identified 
between BMI and shoulder girdle injury (IVW: OR 1.35, 
95% CI 1.09–1.67, p = 5.66E−03) (Fig. 3, Additional file 1: 
Table  S15). Detailed information on each MR analysis 
was exhibited in Additional file  1: Tables S8–S10. Fur-
thermore, sensitivity analysis suggested no heterogeneity 

or horizontal pleiotropy through Cochran’s Q test and 
the MR-Egger intercept. Meanwhile, the MR-PRESSO 
test revealed no potential outliers (Additional file  1: 
Table  S15). The leave-one-out results indicated that the 
causal effect was not actuated by a single IV (Additional 
file 3: Figs. S5–S7).

Genetically predicted physical activities and joint sports 
injuries
Additional file 1: Table S16 displayed the IVs we used in 
analyzing the causal effect of four kinds of physical activi-
ties on joint sports injuries. No causal associations were 
observed when analyzing the effect of physical activities 
on joint sports injuries except for accelerometer-based 
physical activity measurement (average acceleration) 

Fig. 2  A forest plot depicting the results of five different MR estimating methods on the associations between BMI (IVs derived from the Yengo et al. 
study) and the joint sports injury risk of the ankle–foot, knee, shoulder girdle, and neck. MR Mendelian randomization, IVs instrumental variables, BMI 
body mass index
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(AccAve) (Additional file 1: Tables S17–S20). Evidence of 
a protective causal correlation was discovered between 
AccAve and injury at the ankle and foot level (IVW: OR 
0.93, 95% CI 0.87–0.99, p = 0.046) and injury of the lum-
bar spine (IVW: OR 0.68, 95% CI 0.51–0.92, p = 0.012) 
(Fig.  4). Information on MR analyses between AccAve 
and sports injuries at the ankle–foot and lumbar spine 
was provided in Additional file  1: Tables S11–S12. Sen-
sitive analysis revealed that no heterogeneity or hori-
zontal pleiotropy existed in this analysis via Cochran’s Q 
test, the egger intercept, MR-PRESSO (Additional file 1: 
Table  S17), as well as the scatter plot, funnel plot, and 
forest plot of the leave-one-out analysis (Additional file 4: 
Figs. S8–S9).

Effect of genetically predicted BMI on the risk of injury 
at ankle and foot level by adjusting physical activity
Ultimately, the PhenoScanner online website tool (http://​
www.​pheno​scann​er.​medsc​hl.​cam.​ac.​uk/) was conducted 
to confirm whether the SNPs served as IVs in connec-
tion with other phenotypes. Several SNPs related to BMI 
were reported to have an impact on the risk of injury 
at the ankle and foot level [28, 29] (Additional file  1: 

Table  S21). Accordingly, multivariate MR (MVMR) was 
implemented to illustrate the causal associations between 
physical activity and the risk of injury at the ankle and 
foot level, adjusting potential pleiotropy related to BMI. 
The BMI summary data are exhibited in Additional file 1: 
Table S1. Results showed that the effect of AccAve on the 
risk of injury at the ankle–foot still had a nominal statisti-
cal significance after adjusting BMI (Fig. 5).

Discussion
The previous studies provided evidence that participa-
tion in certain sports and BMI were risk factors that 
heightened the risk of suffering joint sports injuries 
such as sprains and strains. However, such conclusions 
remained debatable across studies. In the meantime, 
uncertain confounding factors in observational research 
might be influential on the correlation results. Studies 
on the epidemiology of sports joint injuries indicated 
that increased BMI and greater physical activity were 
risk factors for sports joint injuries [12, 30–33]. Never-
theless, the sample size in these studies was insufficient, 
and only BMI or a single physical activity was analyzed 
without correcting for potential bias. In this study, we 

Fig. 3  A forest plot depicting the results of five different MR estimating methods on the associations between BMI (IVs derived from the Locke et al. 
study) and the joint sports injury risk of the ankle–foot, knee, and shoulder girdle. MR Mendelian randomization, IVs instrumental variables, BMI body 
mass index

http://www.phenoscanner.medschl.cam.ac.uk/
http://www.phenoscanner.medschl.cam.ac.uk/
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systematically explored the causal effect of BMI and dif-
ferent intensities of physical activity on 13 types of joint 
injuries in sports by employing two-sample and MVMR 

methods. Significant positive causal correlations were 
identified between BMI and sports injury risk of the 
ankle, knee, and shoulder girdle. Further investigation 

Fig. 4  A forest plot exhibiting the results of five MR estimating methods on the correlations between AccAve and the joint sports injury 
risk of the ankle–foot and lumbar spine. MR Mendelian randomization, AccAve accelerometer-based physical activity measurement (average 
acceleration)

Fig. 5  Forest plot of MVMR estimates from the IVW method of BMI and PA with the joint sports injury risk of the ankle–foot. MVMR multivariate 
Mendelian randomization, IVW inverse-variance weighted, BMI body mass index, PA physical activity, AccAve accelerometer-based physical activity 
measurement (average acceleration), MVPA moderate-to-vigorous physical activity, VPA vigorous physical activity, SSOE strenuous sports or other 
exercises Accelerometer-based PA (acceleration fraction > 425 mg)
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showed that AccAve was negatively correlated with the 
injury risk of the ankle and lumbar spine. These find-
ings offered a genetic perspective on the causal relation-
ships between BMI, physical activity, and the risk of joint 
sports injury, which might have clinical value for clini-
cians and patients.

Increased body mass index was reported to be a signifi-
cant risk factor for knee, shoulder, and ankle–foot inju-
ries, including meniscal tears, rotator cuff disease, plantar 
fasciitis, and ankle sprains [12, 32–34]. Despite almost all 
epidemiological investigations supporting a higher BMI 
as a risk factor for joint sports injuries, the mechanism 
behind it is still controversial. One hypothesis holds that 
a strong mass moment of inertia acting around the ankle 
leads to ankle sprains and other lower extremity injuries 
[35, 36]. Other theories believe BMI is a valid risk factor 
as obesity is connected with chronic inflammation [37], 
which may contribute to degenerated tendons and pain. 
Obesity is also linked to other diseases like dyslipidemia 
and high blood pressure [38], which may also raise the 
risk of shoulder injury [39, 40]. Using the MR method, 
we identified increased BMI as a risk factor for injuries to 
the ankle–foot, knee, and shoulder. Further, overall aver-
age acceleration (AccAve) was demonstrated as a protec-
tive factor against injury to the ankle–foot and lumbar 
spine. Previous studies suggested men who had better 
scores in push-ups and sit-ups (number of push-ups or 
sit-ups completed in 2 min) and better performance in a 
2-mile run had a higher incidence of ankle sprains than 
their counterparts [12]. Basketball, football, and soc-
cer account for over half of all ankle sprains sustained 
while participating in physical activity, which accounts 
for almost half of all ankle sprains [31]. Ankle sprains are 
thought to occur more likely in physical activities involv-
ing frequent contact with others, as well as repeated run-
ning, jumping, and sharp cutting actions that subject the 
ankle to greater angular and rotational pressure [13, 41–
43]. Compared to lower extremity injuries, the incidence 
of lumbar spine injuries was uncommon [44]. Despite 
this, lumbar spine injuries are still a non-negligible rea-
son athletes are absent from competition [45]. Moreover, 
studies found that athletic competition is more likely to 
result in a lumbar spine injury than routine training [44], 
which proved that injuries are more likely to be caused 
by enhanced athletic effort in sports competitions [46]. 
In contrast to these perspectives, our results suggested a 
protective role for overall average acceleration (AccAve) 
against ankle–foot and lumbar spine injuries. Although 
the precise mechanism of this protection is yet uni-
dentified, one possible interpretation is that moderate 
physical activity, such as slow walking, can strengthen 
multi-muscular coordination for smooth motion, like 
neuromuscular training [47, 48]. It is worth noting that 

vigorous physical activity has no causal relationship with 
the risk of ankle–foot and lumbar spine injuries, accord-
ing to the current results. The inconsistency between 
the results and the previous epidemiologic study may be 
because the definition of vigorous physical activity in the 
original GWAS data needed to be clarified. People were 
asked to answer a questionnaire or wear an accelerom-
eter; fraction accelerations greater than 425 milligravities 
(approximately 4.2 m/s2) were considered high intensity 
[19], which may be affected by cognitive bias or not reach 
the condition of causing joint injuries.

However, the study is subject to some limitations. 
Despite the statistical significance of the results, they 
do not indicate clinical relevance. The case number of 
some sports injury sites is still small; more clinical traits 
and epidemiological research with larger sample sizes 
are urgently needed to confirm the conclusions. Second, 
self-reported measures of physical activity may be influ-
enced by mental states and cognitive bias. Even though 
this does not weaken the reliability of self-reported 
evaluations [49], objective evaluations are still needed to 
confirm their results. Meanwhile, accelerometer-based 
assessments of physical activity have their limitations. 
Movement posture, intensity of muscles and ligaments, 
and nonambulatory activity (e.g., bicycle) are difficult to 
record. Therefore, further investigation is required into 
the causal links between more classified physical activi-
ties and joint injuries. Third, the outcome data extracted 
from the FinnGen database concerning different joint 
injuries need to be updated due to insufficient cases.

In summary, this research conducted a genetic 
approach and evidently found that BMI is causally con-
nected with the injury risk of the ankle–foot, knee, and 
shoulder. Additionally, overall average acceleration 
(AccAve) could causally decrease the injury risk of the 
ankle–foot and lumbar spine. These conclusions sup-
ported a genetic perspective about the causal relation-
ships between BMI, physical activity, and the risk of joint 
sports injury and offered clinical advice for patients and 
caregivers.
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