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Abstract 

Objective  The goal of this study was to evaluate the efficacy of machine learning (ML) techniques in predicting sur-
vival for chordoma patients in comparison with the standard Cox proportional hazards (CoxPH) model.

Methods  Using a Surveillance, Epidemiology, and End Results database of consecutive newly diagnosed chor-
doma cases between January 2000 and December 2018, we created and validated three ML survival models as well 
as a traditional CoxPH model in this population-based cohort study. Randomly, the dataset was divided into training 
and validation datasets. Tuning hyperparameters on the training dataset involved a 1000-iteration random search 
with fivefold cross-validation. Concordance index (C-index), Brier score, and integrated Brier score were used to evalu-
ate the performance of the model. The receiver operating characteristic (ROC) curves, calibration curves, and area 
under the ROC curves (AUC) were used to assess the reliability of the models by predicting 5- and 10-year survival 
probabilities.

Results  A total of 724 chordoma patients were divided into training (n = 508) and validation (n = 216) cohorts. 
Cox regression identified nine significant prognostic factors (p < 0.05). ML models showed superior performance 
over CoxPH model, with DeepSurv having the highest C-index (0.795) and the best discrimination for 5- and 10-year 
survival (AUC 0.84 and 0.88). Calibration curves revealed strong correlation between DeepSurv predictions and actual 
survival. Risk stratification by DeepSurv model effectively discriminated high- and low-risk groups (p < 0.01). The opti-
mized DeepSurv model was implemented into a web application for clinical use that can be found at https://​hust-​
chengp-​ml-​chord​oma-​app-​19rjyr.​strea​mlita​pp.​com/.

Conclusion  ML algorithms based on time-to-event results are effective in chordoma prediction, with DeepSurv hav-
ing the best discrimination performance and calibration.
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Introduction
A chordoma is an intraosseous tumor that develops from 
the remnants of the notochord along the nerve axis. It 
has an incidence of 0.8 per 1 million people and is char-
acterized by sluggish growth, local destruction, low-
grade malignancy, and a significant propensity for local 
recurrence [1, 2]. In the majority (> 95%), the axial skel-
eton is affected, with approximately equal proportions of 
the sacrococcygeum, skull base, and active spine being 
involved [3, 4]. Consequently, the clinical treatment of 
chordoma is extremely challenging.

Chordoma has a median survival of 7.7  years, with a 
5-year survival rate of 72% that drops to 48% and 31% 
at the 10- and 20-year marks, respectively [2]. Female 
patients exhibit a slightly superior prognosis, with a 
median survival of 7.25 years compared to 5.93 years in 
male counterparts. Additionally, skull base chordomas 
have a relatively better survival outlook with a median of 
6.94 years, in contrast to 5.88 years for chordomas of the 
mobile spine. It is noteworthy that women and younger 
patients are more frequently diagnosed with skull base 
chordomas, and their median survival remarkably 
extends to approximately 12 years [5].

Complete resection is currently the best course of 
action for chordoma; however, because the tumor is 
frequently in close proximity to the brainstem, spi-
nal cord, important nerves, and blood vessels, this is 
a challenging procedure [6, 7]. According to research-
ers, aggressive total resection may significantly increase 
the risk of severe complications and even death. Con-
versely, incomplete resection increases the recurrence 
rate [8, 9]. Therefore, surgeons often face difficulty 
determining surgical options. Chordoma is sensitive to 
high-dose radiotherapy, which is an important adjuvant 
therapy for chordoma. However, the therapy can dam-
age surrounding brain tissue, retroperitoneal organ, 
and spinal cord [3, 8], limiting the use of radiotherapy 
in the treatment of chordoma. Recent research has 
demonstrated that high-dose photon/proton radiation 
improves chordoma patients’ 5-year local control rate 
by 85%, disease-specific survival by 89%, and long-term 
failure rate by 20% [9]. Although the safety of the ther-
apy has been improved, it cannot be widely used due 
to its high cost. Beyond the current standard treatment 
of complete resection and high-dose radiotherapy for 
chordoma, research is exploring targeted therapies and 
immunotherapies, such as PD-1/PD-L1 and CTLA-4 
inhibitors [10]. Novel approaches are also being inves-
tigated, like those targeting the overexpressed protein 
brachyury in chordomas [11]. These emerging treat-
ments, although promising, are still in early stages of 
research and require further studies for validation. 

Given these situations, the effective evaluation and pre-
diction of the prognostic advantages of patients with 
chordomas treated in different ways, surgeons are not 
only guided to optimal treatment strategies, neverthe-
less, it also allows patients and physicians to develop 
appropriate individualized treatment plans by weigh-
ing various objective factors such as prognosis, risk, 
income, and economic burden. However, the complex 
pathological features and treatment modalities of chor-
doma create challenges in the accurate prediction of 
chordoma prognosis.

With the purpose of predicting the prognosis of 
chordoma patients, some prognostic factors associ-
ated with chordoma were identified in the previous 
studies, including tumor size, tumor location, vascular 
involvement, tumor metastases, and patient age. [12, 
13]. Using these factors, nomograms based on Cox 
proportional hazards (CoxPH) model were commonly 
constructed to predict survival prognosis. However, the 
CoxPH model assumes that the variables are linearly 
related to the outcomes, and its flaw in ignoring nonlin-
ear relationships in the real world is evident.

This issue has now been effectively resolved by 
machine learning  (ML), which is rapidly being 
employed in oncology, especially for determining the 
prognosis of bone tumors [14–16]. Unlike the tradi-
tional TNM staging and nomogram models based on 
Cox regression analysis, ML algorithms are capable of 
capturing complex, nonlinear relationships between 
variables. This makes them particularly effective in 
interpreting the inherent complexity and potential non-
linearity present in the data [17]. Numerous ML algo-
rithms for survival analysis have been proposed in prior 
studies [18, 19] and have demonstrated superior per-
formance compared to traditional Cox algorithms on a 
variety of medical datasets [17, 20]. Despite individual 
research efforts in applying ML and survival analysis to 
chordoma prognosis, a synergistic integration of these 
two approaches holds promise in unraveling complex 
interactions among clinicopathological factors impact-
ing patient survival.

In this current study, based on a large cohort data-
base containing chordoma, we developed multiple 
prognostic models combined with ML targeting chor-
doma survival outcomes and attempted to compare the 
differences between ML with traditional learning algo-
rithms. We hypothesize that the ML approach will have 
superior performance and flexibility compared to tra-
ditional Cox regression-based survival models. Finally, 
the optimal model will be screened by multiple evalua-
tion metrics and developed into an online web calcula-
tor for use in clinical practice.
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Materials and methods
Eligibility criteria and clinical information
This study used SEER*Stat version 8.3.9 to abstract data. 
SEER is a National Cancer Institute-funded multi-center, 
multi-population registry that covers approximately 28% 
of the US population, with estimated case ascertainment 
of around 98%. We used data from the SEER Research 
Plus 18 Registry from 2000 to 2018, with tight inclusion 
and exclusion criteria. The following were the criteria for 
inclusion: (1) patients with confirmed chordoma based 
on the third edition of the International Classification of 
Diseases for Oncology (ICD-O-3), morphological code 
(9370-9372), and (2) primary sites with the most com-
mon areas associated with the skull, spine, and pelvis 
(site recode ICD-3/WHO 2008 = 410-414). The follow-
ing are the exclusion criteria: (1) survival time is unclear 
(survival time = unknown) and (2) chordoma was not 
considered as the main tumor (first malignant primary 
indicator = No). Figure 1 shows the comprehensive selec-
tion procedure flowchart.

Cohort design and model development
The survival endpoint was defined as the (OS)  time. 
Using a 7:3 ratio, the dataset was randomized to train-
ing and validation cohorts. The corresponding model was 
trained on the training set and evaluated on the valida-
tion set. For the following variables, 17 clinicopathologi-
cal factors were extracted from the SEER database: age, 
sex, marital status, race, histological type, primary site, 
AJCC T, AJCC N, AJCC M, surgery, radiology, chemo-
therapy, tumor size, number of tumors, tumor extension, 
distant metastasis, and median income. We performed 
univariate and multivariate Cox regression analysis on 
all 17 prognostic factors and obtained independent prog-
nostic factors (p < 0.05). Cox regression, both univariate 
and multivariate, was used for feature selection. All com-
parisons were made with a 95% level of confidence, and 
p < 0.05 was considered statistically significant. Then, cor-
relation analyses between features were also conducted to 
exclude collinear features. For training, three algorithms, 
including two based on neural networks (DeepSurv, 

Fig. 1  Profile and analytical pipeline of the study
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NMLTR) and one on ensemble learning (RSF), were 
used. Meanwhile, we performed a multivariable CoxPH 
model for comparative determinations. On the training 
dataset, hyperparameter tuning was accomplished via a 
1000-iteration random search and tenfold cross-valida-
tion (Additional file 1: Table S1). The concordance index 
(C-index) was utilized to assess the performance models 
in combination with various hyperparameters. The open-
source code is available on GitHub at https://​github.​
com/​Hust-​ChengP/​ML_​Chord​oma, and it provides a 
full walkthrough of the model-building process and the 
search space for hyperparameters.

In the development of prognostic models for this study, 
three advanced ML  algorithms were employed, each 
offering unique capabilities that surpassed traditional 
Cox regression models. DeepSurv leverages deep learn-
ing to extend the Cox proportional hazards model, cap-
turing nonlinear intricacies within the dataset. By using 
neural networks to model the hazard function, DeepSurv 
adeptly mapped intricate relationships between covari-
ates and hazard rates, achieving a nuanced understanding 
of survival patterns [21]. NMLTR, a neural network-
based approach tailored for survival analysis, tapped 
into the representational power of neural networks. This 
capability allowed NMLTR to efficiently handle high-
dimensional or nonlinear data, offering a comprehensive 
solution to challenges commonly found in medical data-
sets [22]. RSF stood as an ensemble learning method, 
extending the traditional random forest to accommodate 
censored data. Its inherent design facilitated the capture 
of nonlinearities and interactions between variables with-
out explicit model specification. Coupled with its resil-
ience against overfitting, RSF proved invaluable when 
analyzing datasets with a mix of categorical and continu-
ous variables. Together, these algorithms exemplified the 
evolution of survival analysis, enabling a more in-depth 
and robust exploration of the complexities inherent in 
chordoma prognosis.

Model evaluation and validation
The Cox model’s predictive power was determined by 
computing the Harrell C-index, which compared the like-
lihood of survival to that which was actually experienced. 
A C-index of 0.5 denoted a random prediction, whereas 
a C-index of 1.0 denoted a model that predicts events 
with perfect accuracy. We assessed the significance of 
the C-index differences using Kang’s method [23]. A 
Brier score, used to evaluate the accuracy of a predicted 
survival function at a specific time, was also described. 
It measured the mean square difference between the 
observed patient state and the anticipated survival prob-
abilities, in which zero was the greatest possible result. A 
Brier score < 0.25 indicated that the model was valuable. 

In addition, the integrated Brier score (IBS) gave a cal-
culation of the model’s performance across all accessible 
times. The 5- and 10-year OS was standardized by com-
paring the predicted survival to the observed survival 
using a calibration curve. To test the time-dependent sen-
sitivities and the specificities of the model, the receiver 
operating characteristic (ROC) curves were mapped, and 
the area under the ROC curves (AUC) value was used 
for 5- and 10-year survival. Analyzing the net benefits 
at several probability thresholds, decision curve analysis 
(DCA) was used to evaluate the model’s clinical utility. In 
addition to the primary metrics previously described, we 
further augmented our evaluation framework with key 
discriminative metrics, ensuring a comprehensive assess-
ment of the models. Specifically, sensitivity (or true posi-
tive rate) was computed as the ratio of true positives to 
the sum of true positives and false negatives, providing 
insights into the model’s capability to correctly identify 
positive cases. Specificity, representing the true negative 
rate, was determined as the ratio of true negatives to the 
sum of true negatives and false positives, shedding light 
on the model’s proficiency in correctly classifying nega-
tive instances. Accuracy, a holistic measure, was calcu-
lated as the proportion of true predictions (both positive 
and negative) to all predictions, offering a broad perspec-
tive on overall model performance. Furthermore, to pro-
vide a quantitative measure of calibration, we computed 
the calibration slope and calibration-in-the-large. The 
calibration slope gauged the agreement between pre-
dicted probabilities and observed outcomes, with a value 
of 1 indicating perfect calibration. In contrast, calibra-
tion-in-the-large measured the average prediction error, 
with values closer to zero signifying superior calibration.

Risk stratification
To further validate the viability of our prediction model, 
we divided all patients into low- and high-risk groups 
based on the risk scores given by the models. The thresh-
old values corresponded to the mean risk score of each 
model. After risk stratification, differences between the 
two groups were compared using survival curves and the 
log-rank test.

Feature importance
To evaluate the significance of features to a model, we 
subsequently replaced each feature value with random 
values and used the reduction in the model’s C-index as 
the evaluation metric.

Statistical analysis
All of the clinical data’s continuous variables are shown 
as the mean standard deviation. Categorical variables 

https://github.com/Hust-ChengP/ML_Chordoma
https://github.com/Hust-ChengP/ML_Chordoma
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are described as frequencies and percentages. To com-
pare the variations in the variables between the groups, 
the Chi-square test and the unpaired two-tailed t-test 
were used. The R programming language was used to 
perform data pre-processing and visualization (ver-
sion 4.1.2). ML models were built using the Python 
programming language’s PySurvival module (version 
3.6.8).

Results
Basic characteristics
Seven hundred twenty-four chordoma patients 
matched our criteria for inclusion. Table  1 displayed 
the baseline information of the patients at the time of 
enrollment. They averaged 53 ± 20 years of age, and 58% 
of them were male. The training cohort consisted of 
508 individuals, while the validation cohort comprised 
216 patients. The mean OS for the training group was 
79 ± 47  months, and for the validation group, it was 
83 ± 49  months. There were no statistically significant 
differences between the training and validation cohorts 
for any characteristic (p > 0.05) (Table 2).

Feature selection
All of the data were subjected to univariate and mul-
tivariate analysis of the Cox regression model. Table 2 
displayed the results of the Cox regression analysis, 
which selected 11 important parameters as predictors 
of survival (age, race, primary site, AJCC T, AJCC M, 
surgery, radiotherapy, chemotherapy, tumor size, tumor 
extension, and distant metastasis). In the correlation 
analysis, AJCC T and AJCC M features were omitted 
due to their significant collinearity with other features 
(Fig.  2). Nine variables were ultimately identified as 
independent prognostic factors and used in the devel-
opment of the final model (Fig. 3).

Model comparisons
Table 3 presented the results of a comparison between 
the ML models and the CoxPH model in terms of their 
predictive ability. In the validation dataset, the three 
ML models significantly outperformed the standard 
CoxPH (C-index: 0.735) in terms of C-index (Deep-
Surv: 0.795, p < 0.05; NMLTR: 0.745, p < 0.05; RSF: 
0.758, p < 0.05), with DeepSurv having the highest 
C-index of the three. The models were not overfit-
ting, as evidenced by the low variation in the C-index 
obtained from the training and validation data sets 
(DeepSurv: 0.804; NMLTR: 0.768; RSF: 0.792; CoxPH: 
0.754). IBS values for four models were 0.105 for Deep-
Surv, 0.142 for NMTLR, 0.138 for RSF, and 0.121 for 

CoxPH. Figure 4A and B graphically presented the dis-
criminative capabilities of the ML  models in predict-
ing 5-year and 10-year OS on the validation datasets. 
Across both time intervals, the  ML models exhibited 
superior discriminatory power compared to the tradi-
tional CoxPH model. The AUC values for these models 
were 0.83–0.84 for the 5-year prediction and 0.84–0.88 
for the 10-year prediction, while the CoxPH model 
yielded AUC values of 0.80 for the 5-year prediction 
and 0.74 for the 10-year prediction. Moreover, the sen-
sitivity, specificity, and accuracy metrics extracted from 
Table 3 further highlighted the enhanced performance 
of the ML models over the CoxPH model. Notably, 
the ML  models consistently outperformed in terms of 
calibration, as evidenced by the calibration slope and 
calibration-in-the-large metrics, underscoring their 
reliability in survival probability estimation. As illus-
trated in Fig. 4C and D, the clinical utility of our models 
was further evaluated using DCA. These graphs dem-
onstrate that decisions made using ML models were 
much superior to those made with the CoxPH model 
for clinically relevant thresholds. Overall, among these 
models, the DeepSurv model produced the best results. 
There was a strong correlation between model-based 
and Kaplan–Meier estimations of survival time, as 
shown by the calibration curves for both 5- and 10-year 
survival probabilities (Fig. 4E, F).

Risk stratification
As depicted in Fig.  5, all models performed well when 
defining high-risk groups, patients assigned to the 
low-risk group had a short survival time (log-rank test 
p < 0.01). Of all the models, the two groups stratified by 
the DeepSurv model showed the most significant differ-
ences, in which high-risk patients exhibited lower median 
survival time and a higher risk of death compared to low-
risk patients.

Feature importance
The C-index reduction of each feature after random value 
substitution (Fig. 6) revealed features that are critical to 
model accuracy for prognosis. Five out of nine factors, 
including age, tumor size, primary site, surgery, and race, 
contributed to an average 1% drop in the C-index.

Algorithm deployment
Based on the optimal performance DeepSurv model, we 
developed a user-friendly web application for prediction, 
accessible at https://​hust-​chengp-​ml-​chord​oma-​app-​
19rjyr.​strea​mlita​pp.​com/.

https://hust-chengp-ml-chordoma-app-19rjyr.streamlitapp.com/
https://hust-chengp-ml-chordoma-app-19rjyr.streamlitapp.com/
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Table 1  Patient demographic, disease, treatment characteristics, and Cox regression analysis

Characteristic Overall Univariate Cox Multivariate Cox

N = 724a HR 95% CI p value HR 95% CI p value

Age 53 (20) 1.04 1.04, 1.05 < 0.001 1.05 1.04, 1.07 < 0.001
Gender

 Female 303 (42%) – – – –

 Male 421 (58%) 1.07 0.84, 1.36 0.57 1.13 0.81, 1.59 0.47

Marital status

 Not married 321 (44%) – – – –

 Married 403 (56%) 0.84 0.66, 1.07 0.15 0.81 0.58, 1.13 0.21

Race

 White 607 (85%) – – – –

 Black 30 (4.2%) 0.26 0.10, 0.69 0.007 0.30 0.09, 0.98 0.047
 Other 78 (11%) 1.00 0.68, 1.48 > 0.99 0.82 0.48, 1.39 0.46

 Unknown 9

Histological type

 Conventional chordoma 672 (93%) – – – –

 Chondroid chordoma 47 (6.5%) 0.87 0.53, 1.43 0.59 1.07 0.52, 2.19 0.85

 Dedifferentiated chordoma 5 (0.7%) 2.82 0.90, 8.82 0.075 1.22 0.23, 6.38 0.81

Primary site

 Bones of skull and face 320 (44%) – – – –

 Vertebral column 163 (23%) 1.76 1.31, 2.37 < 0.001 0.73 0.44, 1.20 0.21

 Pelvic bones, sacrum, coccyx 241 (33%) 1.53 1.16, 2.03 0.003 0.26 0.15, 0.44 < 0.001
AJCC T

 T1 427 (80%) – – – –

 T2 98 (18%) 2.16 1.56, 2.99 < 0.001 1.00 0.52, 1.92 > 0.99

 T3 8 (1.5%) 1.85 0.68, 5.00 0.23 1.11 0.29, 4.19 0.88

 Unknown 191

AJCC N

 N0 641 (99%) – – – –

 N1 7 (1.1%) 2.10 0.87, 5.10 0.10 0.77 0.30, 2.01 0.60

 Unknown 76

AJCC M

 M0 663 (98%) – – – –

 M1 17 (2.5%) 6.00 3.47, 10.4 < 0.001 2.67 0.89, 7.99 0.080

 Unknown 44

Surgery

 None 151 (22%) – – – –

 Local excision 166 (24%) 0.30 0.21, 0.42 < 0.001 0.58 0.33, 1.02 0.059

 Partial resection 161 (23%) 0.41 0.29, 0.56 < 0.001 0.87 0.51, 1.47 0.60

 Radical excision 223 (32%) 0.32 0.23, 0.43 < 0.001 0.56 0.34, 0.90 0.017
 Unknown 23

Radiotherapy

 Not 412 (57%) – – – –

 Yes 312 (43%) 0.54 0.42, 0.70 < 0.001 0.53 0.35, 0.80 0.002
Chemotherapy

 Not 684 (94%) – – – –

 Yes 40 (5.5%) 2.23 1.48, 3.37 < 0.001 0.79 0.39, 1.61 0.52

 Tumor size 57 (41) 1.01 1.01, 1.01 < 0.001 1.01 1.01, 1.02 < 0.001
 Unknown 188

Number of tumors
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Discussion
Accurate prediction of survival outcomes for patients 
with chordoma is essential for patient counseling, follow-
up, and decision making on treatment options. Some 
of the factors that influence survival time in patients 
with chordoma include age, tumor size, histologi-
cal type, tumor grade, and metastasis have been widely 
reported [7, 24, 25]. As research into chordoma contin-
ues, more and more prognostic factors such as imaging 
[26, 27], genetics [28, 29], and biomarkers [30, 31] have 
been explored for use in the survival analysis of chor-
doma patients. The limitations of linear relational mod-
els based on the traditional CoxPH model have become 
increasingly apparent in the face of the massive amount 
of multidimensional data [32]. This issue has a good solu-
tion in ML, which has begun to be studied and used in a 
number of medical sectors. As a result, we created three 
ML models and evaluated their effectiveness against the 
traditional CoxPH model to predict the survival possibil-
ity of chordoma patients.

In the current study, four models for predicting chor-
doma patient survival, namely DeepSurv, NMTLR, 
RSF and CoxPH, were constructed and compared by 

collecting and analyzing potentially significant character-
istics of 724 patients with chordoma from the SEER data-
base. We performed a Cox proportional risk regression 
analysis on all included patients with chordoma to iden-
tify prognostic risk factors, including age, race, primary 
site, AJCC T, AJCC M, surgery, radiotherapy, chemo-
therapy, tumor size, tumor extension, and distant metas-
tasis, which were consistent with previous reports in the 
literature [7]. A comparison of several models revealed 
that the DeepSurv prediction model developed by Katz-
man et al. performed best, followed by RSF, NMTLR and 
CoxPH. The DeepSurv model had a C-index of 0.804 and 
0.795 for the training and validation cohorts, respectively, 
and demonstrated an improvement in model accuracy, 
clinical benefits, and calibration. In addition, we have 
integrated the best-performing DeepSurv model into a 
user-friendly web-based application that can be accessed 
using the following link: https://​hust-​chengp-​ml-​chord​
oma-​app-​19rjyr.​strea​mlita​pp.​com/.

There have been some previous studies on prognostic 
models for chordoma, most of which are based on tra-
ditional Cox regression analysis. For example, research-
ers Lin et al. [33] applied a nomogram to predict OS for 

HR hazard ratio, CI confidence interval
a Mean (SD); n (%)

Significance of bold is p<0.05

Table 1  (continued)

Characteristic Overall Univariate Cox Multivariate Cox

N = 724a HR 95% CI p value HR 95% CI p value

 1 658 (91%) – – – –

 > 1 66 (9.1%) 1.40 1.00, 1.98 0.053 1.01 0.62, 1.64 0.96

Tumor extension

 No break in periosteum 119 (18%) – – – –

 Extension beyond periosteum 501 (75%) 1.49 1.03, 2.15 0.036 1.73 1.03, 2.90 0.038
 Further extension 48 (7.2%) 2.79 1.66, 4.69 < 0.001 1.70 0.78, 3.71 0.18

 Unknown 56

Distant metastasis

 Not 663 (98%) – – – –

 Yes 13 (1.9%) 4.89 2.58, 9.26 < 0.001
 Unknown 48

Median income

 < 60 K 174 (24%) – – – –

 60–75 K 313 (43%) 0.93 0.70, 1.25 0.65 0.86 0.58, 1.29 0.48

 > 75 K 237 (33%) 0.76 0.55, 1.04 0.091 0.91 0.59, 1.39 0.66

 Survival months 80 (48)

Status

 Alive 449 (62%)

 Dead 275 (38%)

https://hust-chengp-ml-chordoma-app-19rjyr.streamlitapp.com/
https://hust-chengp-ml-chordoma-app-19rjyr.streamlitapp.com/
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spine chordoma with a C-index of 0.73 in the validation 
dataset. Meng et al. [34] constructed a nomogram model 
to predict the prognosis of chordoma based on a multi-
center database incorporating preoperative and postop-
erative clinical information on patients. Although their 
model achieved a C-index of 0.76 on the validation set, 
the sample size was only 276, which limited the reliability 
of the model. But our established DeepSurv prediction 
model achieved a C-index of 0.78 and its 3- and 5-year 
AUCs were 0.82 and 0.84, respectively, with the results 
superior to those previously reported in the literature, 
reflecting the advantages of DeepSurv in the analysis of 
survival prediction data.

The application of DeepSurv in predicting tumor sur-
vival offered a paradigm shift in the realm of oncologi-
cal prognostication. At its core, DeepSurv was adept at 
capturing nonlinear relationships between predictors 
and outcomes, mirroring the intricate and multifaceted 
nature of real-world clinical scenarios [35]. This nonlin-
earity stood in stark contrast to traditional models, which 
frequently relied on linear relational analyses and might 
not fully encapsulate the complexities inherent to onco-
logical data. Moreover, the versatility of deep learning, as 

exemplified by DeepSurv, extended beyond mere data fit-
ting. It paved the way for a more holistic integration of 
diverse data types, from imaging to genetic markers, and 
potentially harnessing the power of multimodal infor-
mation fusion techniques [36]. As the field of oncology 
continues to evolve, with an ever-expanding repository 
of tumor mechanisms and biomarkers, the potential for 
integrated big data analyses to refine and enhance sur-
vival predictions becomes increasingly evident [37]. 
Notably, our study’s contribution transcends the theo-
retical realm. By embedding our DeepSurv model into 
an intuitive web application, we bridge the gap between 
advanced computational research and clinical practice. 
This digital platform, readily accessible to healthcare 
professionals globally, stands as a testament to the trans-
lational prowess of our research. It promises to revolu-
tionize patient interactions, offering clinicians a robust 
tool to aid in patient counseling, inform therapeutic 
strategies, and optimize follow-up regimens.

In the broader academic landscape, our findings res-
onate with emerging literature on the utility of  ML in 
oncological prognostication. For instance, a study on 
non-metastatic chondrosarcoma patients highlighted 

Table 2  Characteristic distribution of data in training sets and validation sets

Level Overall Train Validation p value

n 724 508 216

Age [mean (SD)] 53.41 (19.68) 53.12 (19.75) 54.09 (19.56) 0.543

Race (%) White 607 (84.9) 421 (84.4) 186 (86.1) 0.826

Black 30 (4.2) 22 (4.4) 8 (3.7)

Other 78 (10.9) 56 (11.2) 22 (10.2)

Primary site (%) Bones of skull and face 320 (44.2) 217 (42.7) 103 (47.7) 0.440

Vertebral column 163 (22.5) 119 (23.4) 44 (20.4)

Pelvic bones, sacrum, coccyx 241 (33.3) 172 (33.9) 69 (31.9)

Surgery (%) None 151 (21.5) 101 (20.5) 50 (24.0) 0.737

Local excision 166 (23.7) 120 (24.3) 46 (22.1)

Partial resection 161 (23.0) 113 (22.9) 48 (23.1)

Radical excision 223 (31.8) 159 (32.3) 64 (30.8)

Radiotherapy (%) Not 412 (56.9) 290 (57.1) 122 (56.5) 0.945

Yes 312 (43.1) 218 (42.9) 94 (43.5)

Chemotherapy (%) Not 684 (94.5) 479 (94.3) 205 (94.9) 0.877

Yes 40 (5.5) 29 (5.7) 11 (5.1)

Tumor size [mean (SD)] 56.80 (40.91) 56.73 (42.56) 56.97 (36.97) 0.951

Tumor extension (%) No break in periosteum 119 (17.8) 81 (17.2) 38 (19.3) 0.666

Extension beyond periosteum 501 (75.0) 354 (75.2) 147 (74.6)

Further extension 48 (7.2) 36 (7.6) 12 (6.1)

Distant metastasis (%) Not 663 (98.1) 463 (97.9) 200 (98.5) 0.805

Yes 13 (1.9) 10 (2.1) 3 (1.5)

Survival months [mean (SD)] 80.12 (47.91) 78.95 (47.38) 82.87 (49.15) 0.314

Status (%) Alive 449 (62.0) 320 (63.0) 129 (59.7) 0.456

Dead 275 (38.0) 188 (37.0) 87 (40.3)
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the potential of ML models in enhancing clinical deci-
sion making [15]. Similarly, the application of ML in 
predicting survival outcomes for spinal and pelvic 
Ewing’s sarcoma underscored the adaptability of these 
models across diverse cancer subtypes [38]. These stud-
ies, in tandem with our findings, underscored the trans-
formative potential of in oncology, heralding a new era 
of data-driven, personalized patient care.

The five features driving results in our model (age, 
tumor size, primary site, surgery, and race) aligned with 
established prognostic factors reported in the litera-
ture. Specifically, age is a critical prognostic factor, as 
chordomas rarely affect patients under 40, with a peak 
incidence between 50 and 60 years old [5]. Older age at 

diagnosis confers worse OS. Tumor size also correlates 
with prognosis, as larger tumors at presentation lead to 
more local destruction and compression of surrounding 
tissues, causing worse symptoms and requiring more 
aggressive surgery. Tumor location is relevant, with 
skull base chordomas having better prognoses than 
sacral or spinal tumors, possibly due to earlier diagno-
sis from symptoms and improved surgical accessibil-
ity. Complete surgical resection is a major predictor 
of prognosis, but is often limited by anatomical con-
straints. Positive margins after surgery increase risks 
of recurrence and death. Finally, race may play a role, 
as chordomas have a higher incidence in Caucasian 

Fig. 2  Coefficients of correlation for every pair of variables in the dataset. The calculated correlation values are evenly distributed between − 1 
and + 1. The strength of a negative or positive correlation increases as a value approaches one of the two final values
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versus African-American populations, implying poten-
tial genetic factors [5]. Overall, the features driving our 
model are consistent with clinical factors known to 
impact chordoma outcomes.

While our study leveraged advanced  ML models to 
predict survival outcomes in chordoma patients, it 
was essential to acknowledge the inherent limitations 
of these models. ML  models, especially deep learning 
architectures, required large datasets to train effec-
tively. The risk of overfitting, where the model per-
formed exceptionally well on the training data but 
poorly on unseen data, was a known challenge [18]. 
Additionally, while these models could capture non-
linear relationships in the data, their interpretability 
remained a concern, making it difficult to understand 
the underlying reasons for specific predictions [19]. 
The absence of external validation across diverse geog-
raphies and ethnic groups further limited the gener-
alizability of our findings. Moreover, ML  models were 
sensitive to the quality and completeness of the input 
data. The SEER database, while comprehensive, might 
lack granular details that could influence survival out-
comes, potentially introducing biases. As with all pre-
dictive models, continuous validation and updating 

were crucial to maintain their accuracy and relevance 
in the face of evolving clinical practices and patient 
populations.

Conclusion
Our study successfully employed ML models, particularly 
the DeepSurv model, to predict OS in chordoma patients. 
The DeepSurv model outperformed traditional CoxPH 
models, demonstrating the potential of ML in enhancing 
predictive accuracy in the medical field. The significant 
prognostic factors identified, such as age, tumor size, pri-
mary site, surgery, and race, align with existing literature, 
reinforcing their clinical relevance. The development of 
a user-friendly web application further emphasizes the 
practical applicability of our findings. Future research 
directions could focus on integrating more compre-
hensive clinical datasets, including radiation modality, 
dosing, and pre/postoperative functional scores. Addi-
tionally, exploring the potential of radiomics, as sug-
gested by recent studies, could further refine prediction 
models. Collaborative efforts across multiple centers and 
geographies would also enhance the external validity of 
these models, ensuring their broader applicability.

Fig. 3  Prediction error curve. As a guideline, a meaning model should have a prediction error of less than 0.25
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Fig. 4  The receiver operating curves (ROC), decision curve analysis (DCA), and calibration curves for 5- and 10-year survival predictions. ROC 
curves for A 5- and B 10-year survival predictions. DCA for C 5- and D 10-year survival predictions. Calibration curves for E 5- and F 10-year survival 
predictions
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Fig. 5  Developed models produce Kaplan–Meier (KM) curves for chordoma patients with varying risk levels. A–D Based on the median risk value 
given by the model for all patients, the patients were separated into high-risk and low-risk groups. The KM curves of patients grouped by various 
models are depicted in (E–H), respectively
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Fig. 6  Heatmap depicting the significance of features for DeepSurv, neural network multi-task logistic regression (NMLTR), and random survival 
forest (RSF) models
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