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Abstract 

The optimal balance between mechanical environment and biological factors is crucial for successful bone healing, 
as they synergistically affect bone development. Any imbalance between these factors can lead to impaired bone 
healing, resulting in delayed union or non-union. To address this bone healing disorder, clinicians have adopted 
a technique known as "dynamization" which involves modifying the stiffness properties of the fixator. This tech-
nique facilitates the establishment of a favorable mechanical and biological environment by changing a rigid fixator 
to a more flexible one that promotes bone healing. However, the dynamization of fixators is selective for certain types 
of non-union and can result in complications or failure to heal if applied to inappropriate non-unions. This review 
aims to summarize the indications for dynamization, as well as introduce a novel dynamic locking plate and various 
techniques for dynamization of fixators (intramedullary nails, steel plates, external fixators) in femur and tibial frac-
tures. Additionally, Factors associated with the effectiveness of dynamization are explored in response to the variation 
in dynamization success rates seen in clinical studies.
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Introduction
In recent years, the rapid socio-economic develop-
ment in the healthcare sector has presented a paradox 
in medicine. Technological advancements have led to 
innovations in medical technology, facilitating the clini-
cal application of various biomaterials and regenera-
tive techniques that benefit patients with bone injuries. 

However, the increased prevalence of large vehicles has 
resulted in a higher incidence of trauma-related injuries, 
including fractures and bone defects [1, 2]. The process of 
bone healing is a multifaceted and intricate physiological 
phenomenon involving various tissues, cells, growth fac-
tors, and mechanical factors working together to regulate 
the osteogenic repair process [3–5]. Biomechanical fac-
tors play a significant role in bone repair, while biologi-
cal factors serve as the foundation for bone healing [6]. 
Mechanical stimuli act as catalysts, initiating a cascade 
of growth factor secretion, recruitment and migration 
of macrophage cells, proliferation and differentiation of 
osteoblasts, and ultimately, completing the individual 
bone regeneration process [7–10].

"The concepts of "Bone adaptability" and "Cellular 
competition for function," originally proposed by Wolff, 
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Roux, and Pauwel, have significantly advanced our 
understanding of the role of mechanical stimuli in bone 
development [11]. It is now established that osteoblasts 
are sensitive to changes in the mechanical environment 
[12, 13]. Different mechanical signals trigger mesenchy-
mal stem cells (MSCs) to differentiate into three different 
phenotypes: fibroblasts, chondroblasts, and osteoblasts, 
ultimately leading to the formation of various functional 
tissues. For example, shear stress induces MSC differ-
entiation into cartilage, while tensile stress leads to the 
formation of fibrous connective tissue, and compression 
stress promotes bone formation [11]. When subjected 
to cyclic tensile strain, bone marrow mesenchymal stem 
cells (BMSCs) differentiate towards osteoblasts or fibro-
blasts, with increasing expression of markers such as 
RUNX2, COL-1, OPN, SCX, COL-3, and TN-C [14, 15]. 
The direction of this cell differentiation correlates with 
the magnitude of the mechanical load. Low to moder-
ate tensile strain conditions promote bone formation, 
while moderate to high loads promote fibrous formation 
[15]. Compression promotes the differentiation of MSCs 
towards chondrocytes and osteoblasts. Axial compres-
sion of medium to high amplitude induces chondro-
genic gene expression, while low amplitude load induces 
osteogenic markers and gene expression, such as alkaline 
phosphatase, osteocalcin, and RUNX2, leading to the 
differentiation of BMSCs towards osteoblasts [15–17]. 
Fluid shear strain has also been shown to promote osteo-
genic differentiation in MSCs, as evidenced by increased 
expression of alkaline phosphatase and osteogenic pro-
tein-2 gene [18]. In addition to regulating cell differentia-
tion during the repair phase, mechanical stimulation also 
plays a crucial role in the remodeling phase of fracture 
healing. It facilitates the conversion of hard bone cal-
lus into lamellar bone, leading to the restoration of the 
complete skeletal form and resistance to deformation 
[19, 20]. Moreover, interfragmentary movement (IFM) 
generated under appropriate strain is believed to aid in 
callus formation, remodeling, and revascularization [21, 
22]. Modifying the mechanical environment to provide 
appropriate stimulation may potentially enhance the 
bone healing process by modulating biological factors."

Disruptions in the harmonization between mechanical 
loads and biological factors can lead to healing disorders 
characterized by delayed or prolonged healing processes. 
In clinical practice, it is not uncommon for such delays 
in bone union and instances of non-union to be attrib-
uted to alterations in the mechanical and biological envi-
ronment. These alterations may include factors such as 
excessive periosteal stripping during surgery, disruption 
of nutrient vasculature, advanced age, and compromised 
metabolic processes, which can inhibit the bone’s natu-
ral repair and reconstruction mechanisms. To address 

these issues, interventions frequently aim to establish a 
favorable biological environment for bone regeneration. 
These interventions can involve various approaches, such 
as genetic therapy, platelet-rich plasma (PRP) therapy, 
bone grafting, and shockwave therapy [23–27]. Con-
versely, delayed union and non-union may also occur 
due to excessive loading or the use of overly rigid fixa-
tors, which are more prevalent in lower limb fractures. 
The complex weight-bearing functionality and specific 
mechanical environment of the femur and tibia con-
tribute to the increased likelihood of delayed union and 
non-union in these cases. Clinical interventions, such 
as dynamization of fixators, exchange of nails, and plate 
augmentation, can improve these bone healing disor-
ders by adjusting the flexibility of the fixation device and 
optimizing mechanical stability to create a favorable bio-
logical condition [28–30]. Among these interventions, 
dynamization of fixators offers significant advantages in a 
human-centered healthcare environment due to its sim-
plicity, minimally invasive nature, and lower cost. How-
ever, the clinical application of fixator dynamization for 
delayed union and non-union of lower limb fractures 
remains controversial, particularly regarding its effective-
ness and the ideal timing for dynamization. This article 
reviews the principles of dynamization, indications, and 
factors affecting dynamization, with a focus on the tech-
niques of fixator dynamization (intramedullary nails, 
steel plates, external fixators) in femur and tibial frac-
tures. It also discusses the differences regarding the tim-
ing of dynamization."

Principle and techniques of " Dynamization " 
for fracture healing
Dynamization and Principle of " Dynamization "
The traditional concept of direct fracture healing using 
rigid fixators to provide absolute stability to the frag-
ments has recently been challenged by an alternative 
approach called secondary healing, which has gained 
popularity in fracture repairs [31–34]. The term "dynami-
zation" refers to procedures that modify biomechani-
cal stability by changing the stiffness and mobility of 
the fixation device. In general, dynamization facilitates 
the second-stage healing process of the fracture, leading 
to the formation of cartilage scabs. This is achieved by 
transitioning the implant from a rigid to a flexible con-
struction, allowing for less restriction of bone fragments 
in the fracture gap, increased IFM, and reduced inter-
fragmentary strain (IFS). According to Stephan Perren’s 
strain theory, an IFS between 2 and 10% is more condu-
cive to promoting differentiation of MSCs into cartilage 
and woven bone formation through secondary healing, 
leading to rapid and robust bone healing [35]. Addition-
ally, the mechanical stimulation generated by improved 
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microcirculation and a more flexible construct promotes 
the secretion of cytokines such as transforming growth 
factor-β (TGFβ-1), insulin-like growth factor 1 (IGF-I), 
vascular endothelial growth factor (VEGF), bone mor-
phogenetic protein 2 (BMP-2), and fibroblast growth fac-
tor 2 (FGF-2). These cytokines play an essential role in 
osteogenesis, blood vessel growth, and the overall repair 
phase [36–39].

While "dynamization" typically refers to a process that 
facilitates bone healing by modifying the mechanical 
environment, it is important to acknowledge that cer-
tain processes affecting the stability of the biomechani-
cal milieu should not be labeled as dynamization. For 
instance, in lower extremity fractures, the application of 
limb weight and muscle forces can create an altered envi-
ronment at the fracture site, resulting in relative motion 
between fracture fragments. As the healing process pro-
gresses, these loads intensify, leading to an increased rela-
tive motion between the fragments in the healing region. 
Furthermore, the approach of Distraction Osteogenesis, 
facilitated by the Ilizarov technique, does not align with 
the traditional notion of dynamization. Conceptually, 
dynamization involves promoting the second-stage frac-
ture healing process by reducing the rigidity of the fixa-
tion device and facilitating axial micromotion between 
the fracture fragments. However, the term dynamization 
encompasses diverse meanings and processes depending 
on the specific fixation devices employed (e.g., intramed-
ullary nails, external fixators, or locking plates). There-
fore, this paper will explore dynamization techniques 
for various fixation devices as well as specially designed 
dynamization devices.

External fixator dynamization
External fixators are widely used in treating lower limb 
fractures, particularly open fractures of the tibia and 
severe fractures with multiple traumas, with an essential 
role in controlling local damage. However, conventional 
external fixators are frequently characterized by excessive 
rigidity during the early stages of fracture healing, which 
may contribute to delayed union or non-union [40]. As 
the significance of the biomechanical environment in 
bone healing gained prominence, the appreciation for 
the elasticity of external fixators grew among certain pro-
ponents. In 1972, Burny et al. employed a unilateral bar 
connected with pins to introduce greater elasticity and 
reduced rigidity to the framing system, thereby facilitat-
ing the formation of healing tissue [41]. Subsequently, 
in 1977, De Bastiani et  al. devised an orthofix dynamic 
axial fixator (DAF) comprising a unilateral external bar 
and screws, enabling enhanced flexibility through adjust-
ments in screw tightness to diminish the stiffness of the 
fixation device. However, it is important to note that this 

approach permits axial motion while limiting rotational 
motion, resulting in axial loading on the fractured end 
and mitigating the adverse impact of shear forces on bone 
healing [42]. This mechanism of modifying the mechani-
cal strain on the healing tissue by progressively altering 
the structural stability of the frame and by relieving the 
axial load to induce axial micro-movements at the frac-
ture site is referred to as "dynamization" of the external 
fixation device. Nevertheless, it is crucial to highlight that 
axial loading in this context temporarily compresses or 
reduces the fracture gap at the fracture end, returning to 
its original state once the load is removed [43]. This spe-
cific form of dynamization is known as ’elastic dynami-
zation’. A clinical study conducted by Bastian et  al. [44] 
demonstrated the efficacy of external fixator dynamiza-
tion in the treatment of delayed union and non-union of 
tibial fractures using the DAF fixation technique. Once 
initial bone callus formation was observed, the first stage 
involved loosening the central 6-angle nut to initiate the 
dynamic axial compression process. Out of 50 patients 
with delayed healing and non-healing, 47 healed within 
an average of 2 months after dynamic treatment, result-
ing in a healing rate of 94% [44]. The axial load-share 
ratio (LS) was then utilized to predict the safe timing for 
external fixator removal during the second stage. Stud-
ies have shown that when the LS of the external fixator 
is less than 10%, the second stage can be initiated, and 
the external fixator can be removed to allow for weight 
bearing [45, 46]. This is because the stiffness of damaged 
bone reaches normal cancellous bone levels at this point, 
and the bone callus is strong enough to bear most of the 
weight-bearing load, reducing the risk of re-injury upon 
removal of the external fixator [47].

The application and advancement of external fixa-
tion braces in the 1950s were spurred by the pioneering 
work of G.A. Ilizarov from the USSR, who introduced the 
concept of tension and stress in his eponymous Ilizarov 
ring external fixation brace. In recent decades, a hexapod 
external fixator has been developed based on the tradi-
tional Ilizarov ring external fixator. This innovative sys-
tem consists of two or more interconnected rings and six 
adjustable telescopic struts with ball heads, designed to 
address mechanical challenges associated with bone non-
union and related issues. [48, 49]. This annular external 
fixator provides a stronger shear resistance than uni-
lateral external fixators while maintaining axial micro-
movement at the fracture site, thereby optimizing the 
mechanical environment for fracture healing [50]. Cur-
rently, the Taylor spatial frames (TSFs) are utilized as 
hexapod external fixation braces, often in conjunction 
with computer-aided navigation technology, to manage 
complex orthopedic conditions including limb deformi-
ties, bone defects, and fracture non-union, among 
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others [51–54]. Similar to the dynamization process of 
DAF immobilizers, the dynamization procedure of TSFs 
involves a gradual removal of struts to decrease the sta-
bility of the structure [55]. Closure of the fracture gap 
returns to normal after removal of the load. Retrospec-
tive analysis by Arvesen et al. [56] of a six-legged exter-
nal fixator for the treatment of hypertrophic distal tibial 
nonunion reported healing of 34 of 37 nonhealing tibiae, 
achieving a healing rate of 94% (35 of 37 tibias resulted in 
bony union for a final union rate of 94%). Lahoti O et al. 
[57] evaluated the effectiveness of TSFs in treating bony 
nonunion in oblique tibial fractures, achieving similar 
results with 11 of 12 cases recovering bone healing with-
out any intervention. However, these studies included 
the upfront compression distraction process along 
with dynamization, making it challenging to determine 
whether bone healing resulted primarily from dynami-
zation or distraction osteogenesis that stimulates bone 
regeneration. Moreover, no prospective randomized con-
trolled studies have been conducted to demonstrate the 
true efficacy of promoting bone healing after removal of 
the external component.

Intramedullary nails dynamization
In recent years, intramedullary nailing has emerged as 
the gold standard for treating lower limb fractures, par-
ticularly femoral and tibial fractures. Its widespread 
adoption is due to its low infection rate, minimal scar-
ring, and the added advantage of early mobilization 
[58]. The early form of intramedullary nailing featured 
a static locking pattern designed to provide additional 
stability through nail/bone interlocking at the proximal 
and distal ends of the bone [59]. However, this reaming 
technique increased the stiffness of the bone-implant 
system, firmly anchoring the rigid implant to the bone 
fragment through interlocking screws. This rigid fixa-
tion can shield the bone from stress and strain stimuli, 
often leading to delayed or non-healing of the bone [60, 
61]. To address these issues, Grosse and Kempf intro-
duced the concept of "dynamization" in intramedullary 
nails, aiming to reduce the stress-obscuring effect by 
delaying the removal of a set of screws distal/proximal 
to the fracture, converting rigid fixation into a flexible 
one [62]. Subsequently, this approach evolved to include 
the incorporation of a longitudinal "dynamic locking 
hole" at the proximal end of the implant, enabling lim-
ited axial movement and rotation [63]. In 1984, Winquist 
et al. conducted extensive experiments that solidified the 
concept of "dynamization" in intramedullary nails and 
recommended it as an adjunctive procedure for treating 
nonunion and non-healing bones [64, 65]. The dynami-
zation technique, when applied to interlocking intramed-
ullary nails, increases IFM, promoting bone healing. By 

reducing stress masking, it allows unimpeded axial loads 
to compress and close the fracture gap. "It is important 
to note that, unlike the elastic dynamization observed in 
external fixation braces, the dynamization in the context 
of intramedullary nails is referred to as ’axial dynamiza-
tion’. It is noteworthy that the removal of the load does 
not result in the restoration of the previously reduced 
or closed fracture gap. [66]. Several animal-based stud-
ies investigating the axial dynamization of intramedul-
lary nails have demonstrated the beneficial effects of 
positive dynamization through axial motion. These ben-
efits include fracture gap closure, fragment stabilization 
through surface compression, and significant advantages 
in fractures with distinct fracture gaps capable of sup-
porting the fragments [67, 68].

The technique of intramedullary nail dynamization is 
well-established and widely used in clinical practice due 
to its simplicity [28, 69–76]. However, the effectiveness of 
intramedullary nail dynamization in treating bone heal-
ing disorders has been reported with conflicting results in 
various studies (Additional file 1: Table S1). For instance, 
Pesciallo et al. [28] conducted a retrospective analysis of 
41 patients with delayed union of tibial shaft fractures 
who underwent intramedullary nail dynamization. They 
found a 92.3% healing rate after removing the locking 
hole screw. Similarly, Litrenta et al. [73] conducted a ret-
rospective study involving 97 tibial shaft fractures with 
non-union and demonstrated a high healing rate with 
dynamization treatment. In contrast, other studies have 
reported low healing rates and ineffectiveness of dynamic 
fixation with intramedullary nailing in improving non-
union. Vaughn et al. [70] conducted a meta-analysis that 
reported a healing rate of 66.4% for femoral fractures 
treated with intramedullary nail dynamization, which 
was lower than the success rate of exchange intramedul-
lary nailing for non-union. They also found that out of 35 
cases with delayed healing or non-union of lower limb 
fractures, only 19 cases (54%) achieved complete heal-
ing, with the remaining patients requiring bone grafting 
or secondary surgical interventions such as intramedul-
lary nailing for healing [70]. The variation in healing rates 
across studies can be attributed to several factors, includ-
ing the study design, the method of dynamization used, 
the type of fracture, and the size of the fracture site gap.

Traditionally, dynamization of an intramedullary nail 
is accomplished by removing all screws from one end 
of the nail. However, this approach has been observed 
to have a lower success rate [77]. Compared to the for-
mer approach, retaining dynamic hole screws in place 
during the dynamization procedure leads to better out-
comes [76, 78]. By retaining some screws, the stability of 
the intramedullary nail is reduced but not lost, resulting 
in a lower risk of rotation and shortening deformities 
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compared to removing all screws. Moreover, controlled 
rotational stability facilitates the onset of endochondral 
ossification, which is critical for successful bone heal-
ing [79]. In contrast, during secondary healing, kinetic 
action without rotational control can result in excessive 
rotation at the gap, leading to cellular rupture, cessation 
of healing, fibrous tissue formation, and inhibition of 
endochondral ossification [78, 80]. Additionally, unsta-
ble fracture types, such as long oblique, spiral, commi-
nuted, and segmental fractures, are risk factors for poor 
healing outcomes after dynamization [70, 81]. Wu and 
Chen [72] found that the healing rate after dynamiza-
tion of intramedullary nails in segmental fractures with 
bone non-union was only 42%, while Pan et  al. [69] 
reported a success rate of only 61.5% for locking screws 
with intramedullary nails removed for closed commi-
nuted fractures with bone non-union. This often occurs 
because the inherently unstable environment of complex 
fractures tends to disrupt the balance between mechan-
ics and biology after locking nail removal, leading to a 
higher failure rate. Therefore, the stiffness of the fixator 
in postoperative bone non-union for unstable fractures 
is often modified only when the fracture ends are suffi-
ciently stable [79, 82]. Another critical variable is the size 
of the fracture gap. The ability of bone repair is related to 
the gap size, with larger gaps leading to less bone forma-
tion and lower strength of the healing bone. Clinically, a 
smaller gap and adequate contact pressure in the fracture 
ends are critical factors in improving successful healing 
[83]. Experimental studies have shown that fractures with 
gaps smaller than 2 mm produce more cartilage and bone 
in the fracture gap, leading to greater stability and faster 
healing compared to fractures with larger gaps [84]. Con-
versely, larger gaps result in a reduction in periosteal cal-
lus and less bone formation in the fracture gap, leading to 
weaker healing bones [85]. When the gap exceeds a criti-
cal bone defect, dynamization alone is inadequate for the 
healing process, and bone healing may fail [86].

Locking plate dynamization (active dynamization 
or temporal dynamization)
In the past, plate fixation for fractures aimed to achieve 
absolute stability to prevent loosening of the implant due 
to even minor movements. However, it has been shown 
that overly rigid plate construction can lead to inad-
equate and asymmetrical callus formation, fixator fail-
ure, and union disorders [87]. To address this issue, the 
distal cortical locking (DCL) technique was developed 
to reduce construct stiffness while maintaining strength 
and applied to the fixation of lower limb fractures. When 
the screw is securely locked in the plate hole and the dis-
tal cortex, the distal cortical locking system introduces 
controlled dynamization through the elastic bending of 

a finer diameter screw within the proximal cortical hole. 
Under axial stress, the dynamic locking screw of the DCL 
system enables micromovement between the fracture 
blocks by inducing overall deformation. Notably, since 
the proximal cortex is not fixed, the micromovement at 
the fracture site, both proximal and distal to the plate, 
exhibits parallel motion (parallel micromotion). This 
symmetrical micromotion promotes balanced healing of 
the fracture, facilitating the second-stage healing process 
[88, 89].

Another device for active dynamization to increase 
axial motion is a novel dynamic plate designed by Tsai 
et al. [90]. The special design of the locking holes in the 
plates forms the basis and core of the "active dynamiza-
tion," with locking holes integrated into individual sliding 
elements that are elastically suspended in a silicone enve-
lope inside lateral plate pockets. In this case, the sliding 
elements come with a locking hole and can move axially 
within a specific range, providing symmetrical axial strain 
to the near and far cortex (Fig.  1). The effectiveness of 
these plates in promoting bone healing was subsequently 
evaluated in an animal study by Bottlang et al. [91]. They 
observed homogeneous annular callus formation around 
the sheep tibias after plating fixation, restoring 81% 
strength compared to the unbroken tibias, demonstrating 
that the novel locking plates provide faster, stronger, and 
more symmetrical bone healing. Although there is a lack 
of evidence demonstrating the reduction of delayed heal-
ing and non-union, active dynamization creates a favora-
ble mechanical environment for fracture healing from 
the initiation of fixation and has the potential to prevent 
non-union in the initial healing phase. 

If, unfortunately, delayed healing and non-union occur 
during the healing process, is there a temporal dynami-
zation of plating to reverse the outcome of these bone 
disorders? Drawing inspiration from the dynamization 
of intramedullary nails, Xu et al. [92] proposed the lock-
ing compression plate (LCP) dynamization method for 
the treatment of delayed bone healing and non-union 
in long bone fractures of the lower extremity. The LCP 
dynamization approach involves removing the lock-
ing screws at the more stable fracture end and replacing 
them with regular screws, resulting in an improved bone 
healing process with an 85.71% success rate and shorter 
healing time after plating dynamization. Similarly, Sun’s 
[93] animal experiment yielded comparable results. The 
LCP dynamization procedure modifies rigid locking 
compression plates into more flexible constructs, reduc-
ing strain on the plate and increasing axial strain on the 
fracture ends. In fact, the modification of the plate-screw 
interface at the diaphysis level provides axial micro-
movement without shear or fixation failure and pro-
motes a more uniform annular callus [93–95]. However, 
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LCP dynamization has clinical limitations, including an 
increased risk of infection due to re-incision to expose 
the soft tissues and the potential loss of stability during 
screw replacement, with the risk of re-fracture of the 
bridging callus if the timing is inappropriate. Therefore, 
LCP dynamization requires a skilled surgeon to perform.

Indications for dynamization
The classification system proposed by Weber and Cech 
[96] has been widely adopted to categorize bone non-
unions, dividing them into atrophic and hypertrophic 
types. Aseptic bone non-unions can be classified into 
hypertrophic and atrophic non-unions based on the 
radiographic manifestations of callus [96]. Hypertrophic 
non-unions are characterized by hypervascular and vital 
discontinuity, associated with an overly flexible fixator 
or premature weight bearing, resulting in pediform or 
horseshoe-shaped callus on radiographs. Atrophic non-
unions, on the other hand, are described by the lack of 
callus formation and atrophic fracture ends. They were 
previously considered avascular non-unions [97, 98], but 
current evidence suggests they have a normal vascular 
supply, similar to hypertrophic dysplasia [99–101]. The 
mechanism by which atrophic dysplasia occurs remains 
unclear, but some researchers suggest it is related to the 
reduced osteogenic capacity of mesenchymal stem cells 

in the fracture space, rendering them quiescent [99, 102]. 
Thus, atrophic non-union is more appropriately referred 
to as biological non-reactive, non-viable non-union. This 
classification is essential for both basic research and clin-
ical practice. Several studies suggest that dynamization 
is more suitable for stable atrophic non-unions [82, 103], 
where the original fracture is primarily axially stable, 
such as in transverse or short oblique fractures. In such 
cases, a stable environment ensures that the axial load 
on the bone is within a safe range after the implant stiff-
ness changes [82, 98]. Mechanical stimulation promotes 
local angiogenesis and osteogenesis in the non-union, 
resulting in eventual successful healing. In contrast, 
hypertrophic non-unions are characterized by biome-
chanical instability [97], and dynamization of fixators is 
equally effective in treating this condition, as stability is 
enhanced due to bone callus in the fracture gap, and poor 
alignment is less likely to occur after healing [82, 104]. 
However, it has also been suggested that fixator dynami-
zation may not be necessary for hypertrophic non-unions 
[82].

On the other hand, unstable atrophic non-unions are 
generally unsuitable for flexible orthopaedic fixators [69]. 
Fixators with lower stiffness can cause misalignment of 
fracture ends, and this risk is amplified by axial instabil-
ity and sparse bone callus. Complications such as limb 

Fig. 1 The new dynamic locking plate in which the special design of the locking holes allows axial motion of sliding elements within a certain 
range. A The new dynamic locking plate. B–D. The structure of sliding element.  (Source: Bottlang et al. [91], permission by wolters kluwer health 
inc)
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shortening or rotational deformity may occur in such 
cases [70, 77, 105, 106]. Therefore, bone grafting and 
plate augmentation are often preferred for treating unsta-
ble atrophic non-unions, as they improve mechanical sta-
bility and the biological environment [82, 103, 107–110].

Additionally, the recently validated Non-Union Scor-
ing System (NUSS) is an effective scoring system for 
non-unions, categorizing them into four classes based on 
the severity of various risk factors [111, 112]. The NUSS 
score could theoretically help predict which bone disor-
ders could benefit more from dynamization, as low NUSS 
scores are associated with higher success rates. A study 
by Stolberg et al. [71] demonstrated that NUSS scores are 
a relevant factor in the success of dynamization for bone 
non-unions. However, more clinical studies on the NUSS 
score and dynamization are needed to establish the effec-
tiveness of this treatment approach for bone non-unions.

Ideal timing for dynamization
Interestingly, dynamizing the fixator is not only a thera-
peutic approach to treating bone non-union but also a 
preventive measure against its occurrence. When fixing 
limb fractures, it is wise to dynamically adjust the fixa-
tors before delayed union and non-union set in, thereby 
reducing the incidence of these debilitating bone healing 
disorders. However, the optimal timing to switch from 
rigid to flexible fixators remains controversial. Previous 
studies have investigated the effects of early (1–2 weeks) 
and late (3–4  weeks) dynamization on bone healing, 
based on animal models and finite element analysis [66, 
113–116]. Takeda et al. [113] investigated the impact of 
mechanical stimulation on bone callus using a rat tibial 
fracture model and discovered that early-phase (2 days) 
axial mechanical stimulation encouraged hematoma 
formation and focal accumulation of inflammatory cells 
during the inflammatory response phase. It also pro-
moted intrachondral calcification during the bone callus 
formation phase. Similarly, Lassion et  al. [114] studied 
the effect of early dynamization (1  week) on periosteal 
bone callus development, new bone formation, callus tis-
sue formation, and mechanical strength. They performed 
axial dynamization with Orthofix external fixators one 
week postoperatively and observed greater torsional stiff-
ness and a more uniform distribution of periosteal bone 
callus on the dynamized side of the tibia. However, they 
found less bone and cartilage volume compared to rigid 
fixators [66]. In contrast, Claes et  al. [66] demonstrated 
that early dynamization (1  week) did not promote frac-
ture healing. They investigated the impact of early axial 
dynamization by reducing the unilateral external fixator 
stiffness one week postoperatively and evaluated stiff-
ness, callus mineralization and volume, and tibial callus 
density during the healing process. Their results showed 

poorer bone healing measures compared to the flexible 
fixation group, with smaller but stiffer and better min-
eralized callus volume in the rigid fixation group. It is 
worth noting that early dynamization (1–2  weeks) has 
been shown to promote differentiation of mesenchymal 
stem cells (MSC) to the cartilage phenotype and prolong 
the cartilage callus formation period in several studies 
[66, 115]. This results in more cartilage and evenly dis-
tributed callus with potentially lower quality. However, it 
is not necessarily a negative outcome for the final heal-
ing outcome. Furthermore, the degree of dynamization is 
an overlooked crucial factor due to the difficulty of accu-
rately manipulating the stiffness properties of fixators 
in clinical practice. Fu et al. [116] examined the interac-
tion between the degree of dynamization (the stiffness 
variability from rigid to more flexible fixation) and tim-
ing of dynamization on fracture healing using finite ele-
ment analysis. Their results showed that a high degree of 
dynamization (DC = 0.9) significantly delays the fracture 
healing process, while a moderate degree of dynami-
zation (DC = 0.7) effectively promotes the recovery of 
biomechanical integrity. In conclusion, the timing and 
degree of dynamization play significant roles in fracture 
healing. Early dynamization can have varying effects on 
bone healing, and the optimal degree of dynamization is 
critical to ensure successful recovery. Further research is 
needed to establish precise guidelines for the application 
of dynamization in fracture management.

Despite the valuable insights gained from animal stud-
ies, their applicability to clinical treatment is limited due 
to the structural and mechanical differences between ani-
mal and human skeletons. Premature modifications to 
the stiffness properties of fixators, especially intramedul-
lary nails, based solely on animal study results within one 
to four weeks, may compromise the fixator’s anti-rotation 
and anti-compression properties, thereby leading to sub-
optimal fracture healing [70, 77, 105]. Such consequences 
may not be acceptable in clinical practice. Although the 
specific outcome has not been studied, it can be reason-
ably anticipated. Observing healing time and healing 
rates in various clinical studies, a dynamization timing 
between 10 and 24  weeks appears to be the most suit-
able option [76, 78, 117]. In a retrospective analysis by 
Vicenti et  al. [117] on patients with femoral shaft frac-
tures who underwent dynamization at 4, 5, and 9 months 
after fixation, those who had screws removed after four 
months showed significantly shorter healing times 
(8.12 ± 0.95  months) compared to those dynamized at 
nine months (15.4 ± 1.49 months). Similarly, Zheng et al. 
[76] found that patients who underwent dynamization 
within six months of surgery exhibited higher healing 
rates for femoral stem fractures compared to those who 
underwent dynamization later. Huang et al. [78] reported 
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that the healing rate for patients who underwent dynami-
zation between 10 and 24 weeks after intramedullary nail 
placement (83.3%) was significantly higher than for those 
who underwent dynamization after 24  weeks (33.3%). 
These findings suggest that clinical dynamization during 
the transition from cartilaginous to hard callus is optimal 
for shorter bone healing times and higher healing rates. 
Additionally, the timing of dynamization may also be 
guided by the callus-to-diaphysis ratio (CDR) observed 
in imaging. Vaguhn et  al. [70] reported a high healing 
rate of fractures (93%) after dynamization, as predicted 
by a ROC curve analysis of 24 patients with a CDR > 1.17. 
In another retrospective study [117], bone healing was 
achieved within nine months of trauma when the CDR 
was between 1.47 and 1.19. Although a limited number of 
relevant studies are available, these imaging-based evalu-
ation indicators provide objective evidence that can be 
directly observed. However, further clinical studies are 
needed to investigate the validity of these indicators in 
predicting the optimal time for dynamization.

Conclusion and future directions
This comprehensive review paper examines the vari-
ous dynamization techniques and factors influenc-
ing successful bone healing in the lower limb. Different 
approaches such as dynamization of intramedullary nails, 
plates, and external fixators are available. The primary 
goal of dynamization is to enhance IFM and promote 
bone healing by transitioning the fixation device from a 
rigid to a more flexible state. Simultaneously, under axial 
load, the fracture gap undergoes compression. In the con-
text of dynamization, external fixation devices typically 
restore the fracture gap once the load is removed, a pro-
cess known as elastic dynamization. On the other hand, 
dynamization of intramedullary nails often results in the 
reduction or closure of the fracture gap, a phenomenon 
referred to as axial dynamization. Notably, the novel 
dynamic plate introduces ’active dynamization,’ enabling 
accurate bone healing through homogeneous axial move-
ments. The effectiveness of dynamization varies based on 
factors such as timing, type of bone non-union, fracture 
type, and degree of dynamization. Early dynamization 
proves beneficial by increasing interfragmentary motion 
and promoting fracture gap closure. Moreover, dynami-
zation is particularly suitable for stable atrophic and 
hypertrophic non-unions. However, it is essential to note 
that unstable atrophic nonunion presents a risk factor 
for dynamization. By considering these factors carefully, 
healthcare professionals can make informed decisions 
regarding the choice of dynamization technique, ulti-
mately leading to successful bone healing outcomes.

While the use of intramedullary nails and external 
fixators for dynamization is widespread, they are not 

always effective as standalone treatments for bone heal-
ing disorders. There are still many other methods, such as 
extracorporeal shockwave therapy [27] and platelet-rich 
plasma [23], to create favorable biological conditions for 
bone repair. Studies have shown that shockwave therapy 
combined with dynamization can increase the healing 
rate [71], and it may be a wise choice to combine other 
adjuvant therapies for bone non-union while applying 
dynamization in the future. The dynamization of locking 
plates, on the other hand, has received less attention in 
both clinical and animal models, and further exploration 
is needed to understand its biomechanics and mecha-
nism of action on fracture healing disorders. The type 
and position of screws, as well as the steel plate’s design, 
determine the sructure’s mechanical properties, which 
can be altered by replacing screws or employing special 
locking screw hole designs. Innovations in this area could 
potentially lead to new, effective therapeutic techniques.

Additionally, the factors that influence dynamization 
effectiveness mentioned in this review are just the tip 
of the iceberg. Other factors, such as smoking, gender, 
age, and soft tissue injury, have also been shown to influ-
ence bone healing after dynamization [71, 97]. Although 
recommendations have been made for the appropri-
ate degree of dynamization, there is a lack of relevant 
research data to support these recommendations, limit-
ing their practical application. However, with the rapid 
advances in computerized digital technology, orthopae-
dic surgical robots (Ti-robots) offer a potential solution 
to this problem [118]. The Ti robot has been used for 
intraoperative navigation and positioning, error reduc-
tion, and precise movements [119, 120], and its high data 
storage, processing, and conduction capabilities make it 
possible to accurately control the degree of dynamiza-
tion [121]. The biomechanical advantages of orthopaedic 
surgical robot-assisted surgery have already been dem-
onstrated [122], and its powerful in  vitro biomechani-
cal testing capabilities can accurately predict the level of 
dynamization that is most beneficial for bone healing, 
guiding clinical practice [123].
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