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Abstract 

Background Hip fracture (HF) is one of the most common fractures in the elderly and is significantly associated 
with high mortality and unfavorable prognosis. Postoperative pneumonia (POP), the most common postoperative 
complication of HF, can seriously affect patient prognosis and increase the burden on the healthcare system. The 
aim of this study was to develop machine learning models for identifying elderly patients at high risk of pneumonia 
after hip fracture surgery.

Methods From May 2016 to November 2022, patients admitted to a single central hospital for HF served as the study 
population. We extracted data that could be collected within 24 h of patient admission. The dataset was divided 
into training and validation sets according to 70:30. Based on the screened risk factors, prediction models were 
developed using seven machine learning algorithms, namely CART, GBM, KNN, LR, NNet, RF, and XGBoost, and their 
performance was evaluated.

Results Eight hundred five patients were finally included in the analysis and 75 (9.3%) patients suffered from POP. 
Age, CI, COPD, WBC, HB, GLU, STB, GLOB,  Ka+ which are used as features to build machine learning models. By evalu-
ating the model’s AUC value, accuracy, sensitivity, specificity, Kappa value, MCC value, Brier score value, calibration 
curve, and DCA curve, the model constructed by XGBoost algorithm has the best and near-perfect performance.

Conclusion The machine learning model we created is ideal for detecting elderly patients at high risk of POP after HF 
at an early stage.
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Introduction
Hip fractures (HF) are devastating osteoporotic frac-
tures, as they are closely associated with high morbid-
ity, high mortality, and poor prognosis [1, 2]. HF, one of 
the most common fractures in older adults, accounts for 
more than 14% of fractures in older adults [3]. Although 

its incidence has declined in developed countries, the 
absolute incidence of HF is growing as population aging 
progresses worldwide [4–8]. The study indicates that the 
number of people with HF will increase to 6.3 million 
by 2050 [9]. Although different types of HF have differ-
ent surgical options [10, 11], surgical treatment can sig-
nificantly improve patient prognosis. The poor prognosis 
of HF is closely related to postoperative complications 
[12]. Effective perioperative management of patients 
with hip fractures can significantly reduce the number 
of postoperative complications [13, 14]. The most fre-
quent postoperative complication in HF is postoperative 
pneumonia (POP), which increases mortality and length 
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of hospital stay [15, 16]. In patients with POP, the risk 
of death increased to 3 times 43% at 30 days and to 2.4 
times 71% at 1 year [15]. To improve patient prognosis, 
it is crucial to identify patients who are at high risk for 
developing postoperative pneumonia early and to take 
appropriate action. Machine learning (ML) algorithms 
are often used in the construction of clinical predictive 
models. As an important subfield of artificial intelligence, 
ML can learn from databases and have better predictive 
results for metrics than traditional linear models [17].

The aim of this study is to develop a machine learning 
algorithm prediction model to early identify patients at 
high risk of POP based on data collected at the time of 
patient admission to assist clinicians in decision-mak-
ing, which can provide early intervention for high-risk 
patients and reduce the incidence of POP.

Materials and methods
Data collection
This study collected patients who were hospitalized for 
hip fractures at a university hospital from May 2016 to 
November 2022. Relevant medical record data informa-
tion was extracted from the electronic medical record 
system. Inclusion criteria: (1). Patients admitted to the 
hospital for hip fracture; (2). The patient’s age was not 
less than 60 years old. Exclusion criteria: (1). Not treated 
surgically; (2). Preoperative diagnosis of lung infection; 
(3). Multiple injuries; (4). Missing data information > 20%; 
(5). With acute cardiovascular or cerebrovascular disease, 
cancer, or other diseases that have a serious impact on 
the patient’s prognosis; (6). Pathological fractures.

The diagnosis of POP is based on the Centers for Dis-
ease Control and Prevention’s diagnostic criteria for POP 
[18]. In this study, the diagnosis of POP was based on the 
presence of the following events identifiable in the elec-
tronic medical record system in the time period after 24 h 
after surgery and before discharge: (1) new pulmonary 
infiltrative shadows, solid lesions, or cavity formation on 
imaging (X-ray or CT); (2) exclusion of other causes of 
fever (> 38  oC), leukopenia (leukocyte count < 4 ×  109/L) 
or leukocytosis syndrome (leukocyte count > 12 ×  109/L), 
or for adults over 70  years of age with altered mental 
status excluding other recognized causes; (3) changes 
associated with increased respiratory secretions, cough-
ing and sputum, dyspnea, pulmonary rales, or bronchial 
breath sounds were documented in the medical record 
system.

The general patient characteristics, prevalent geriatric 
chronic diseases, and prevalent laboratory test results 
available within 24 h of admission were among the vari-
ables we extracted. The specific items are detailed in 
Table  1. Since different testing reagents and modali-
ties can produce different normal values for laboratory 

results, we converted all laboratory test results combined 
with clinical data into dichotomous variables based on 
whether they exceeded the upper limit or fell below the 
lower limit.

Two authors independently extracted the data, and a 
third author confirmed the veracity of the data. The study 
was approved by the hospital ethics review committee 
(number: KYXM-202302-005). An informed consent 
waiver was obtained because the study was retrospec-
tive and the personal information of the patients was 

Table 1 Characteristics of patients in the training set

Left Fracture side, Fracture.time Time from injury to admission, FNF Femoral neck 
fracture (fracture type)

HBP High blood pressure, CHD Coronary heart disease, DM Diabetes mellitus, CI 
Cerebral infarction, COPD Chronic obstructive pulmonary disease, WBC White 
blood cell count, N Neutrophil ratio, RBC Red blood cell count, HB Hemoglobin, 
PLT Platelet count, GLU Blood glucose, ALT Alanine aminotransferase, AST Alanine 
aminotransferase, STB Sum bilirubin, DBIL Direct bilirubin, IBIL Indirect bilirubin, 
ALB Albumin, GLOB Globulin, BUN Blood urea nitrogen, Cr Creatinine,  Ka+: 
potassium ion,  Na+ Sodium ion,  Ca+ Calcium ion

Variables No-POP (n = 512) POP (n = 51) p

Female, n (%) 340 (66) 33 (65) 0.929

Age, Median (Q1, Q3) 78 (72, 84) 83 (79, 86.5)  < 0.001

Left, n (%) 269 (53) 30 (59) 0.477

Fracture. time, Median (Q1, 
Q3)

1 (1, 2) 1 (1, 2) 0.972

HBP, n (%) 259 (51) 23 (45) 0.548

CHD, n (%) 82 (16) 7 (14) 0.821

DM, n (%) 87 (17) 8 (16) 0.967

CI, n (%) 123 (24) 17 (33) 0.195

COPD, n (%) 40 (8) 11 (22) 0.003

FNF, n (%) 248 (48) 19 (37) 0.168

WBC [> 10 ×  109/L], n (%) 93 (18) 19 (37) 0.002

N [> 70%], n (%) 411 (80) 41 (80) 1

RBC [< lower limitation], 
n (%)

284 (55) 32 (63) 0.395

HB [< Lower Limitation, g/L], 
n (%)

311 (61) 36 (71) 0.219

PLT [< 100 ×  109/L], n (%) 75 (15) 6 (12) 0.726

GLU [> 6.1 mmol/L], n (%) 251 (49) 30 (59) 0.235

ALT [> 40u/L], n (%) 20 (4) 2 (4) 1

AST [> 40u/L], n (%) 26 (5) 4 (8) 0.338

STB [> 17.1umol/L], n (%) 247 (48) 32 (63) 0.067

DBIL [> 6.8umol/L], n (%) 224 (44) 29 (57) 0.099

IBIL [> 10.2umol/L], n (%) 269 (53) 32 (63) 0.213

ALB [< 35 g/L], n (%) 127 (25) 18 (35) 0.143

GLOB [> 35 g/L], n (%) 40 (8) 8 (16) 0.065

BUN [> 9.5 mmol/L], n (%) 105 (21) 11 (22) 1

Cr [> 97umol/L], n (%) 76 (15) 8 (16) 1

Ka+ [< 3.5 mmol/L], n (%) 138 (27) 8 (16) 0.113

Na+ [< 135 mmol/L], n (%) 25 (5) 3 (6) 0.733

Ca+ [< 2.18 mmol/L], n (%) 353 (69) 37 (73) 0.709
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withheld during the analysis. All procedures performed 
in this study were in accordance with the 1964 Declara-
tion of Helsinki and its amendments.

Statistical analysis
We use multiple interpolations to interpolate the missing 
data, which is done through the "mice" package in R. The 
median (interquartile range) was used to represent non-
normally distributed continuous variables, and categori-
cal variables were expressed as percentages. Continuous 
variables were analyzed using the Mann–Whitney U; cat-
egorical variables were analyzed using the chi-square test 
or Fisher test.

All patients included in the analysis were randomly 
divided into training and validation sets according to 
70:30. To avoid the effect of multicollinearity among 
variables, we will use the Least Absolute Shrinkage and 
Selection Operator (LASSO) technique to perform 
screening of variables [19]. The screened variables were 
then subjected to correlation tests to clarify the pres-
ence of multicollinearity among the variables, and the 
correlation heatmap was drawn. The correlation coef-
ficients were taken as [−  1,1], the larger the absolute 
value, the stronger the correlation, and greater than 0.4 
indicated the existence of a significant correlation. The 
filtered variables are incorporated as final features in the 
model of the machine learning algorithm. Using Classi-
fication and Regression Tree (CART), Gradient Boosting 
Machine (GBM), k-Nearest Neighbors (KNN), Logistic 
Regression (LR), Neural Network (NNet), Random For-
est (RF), and eXtreme Gradient Boosting (XGBoost), the 
seven machine learning algorithms to build prediction 
models. Ten times tenfold cross-validation resampling 
was used to ensure the stability and reproducibility of the 
model performance. The receiver operating characteristic 
(ROC) curve was used to evaluate the predictive perfor-
mance of the model, and the higher the area under the 
curve (AUC) of the ROC, the better the model discrimi-
nation. Accuracy, sensitivity, specificity, Kappa value, and 
Matthews correlation coefficient (MCC) values were used 
as additional descriptions of the predictive ability of the 
model. The Kappa value is a metric to evaluate the con-
sistency between the predicted and actual values of the 
model, and it takes the value of [−  1,1], the closer to 1, 
the better the consistency [20]. If it is > 0.75, the consist-
ency is excellent, if it is between 0.40 and 0.75, the con-
sistency is good, and if it is < 0.4, the consistency is poor. 
Due to the low incidence of positive events in this study, 
Matthews correlation coefficient (MCC) values provide a 
more balanced reflection of the model’s predictive accu-
racy for a dataset with this imbalance problem. [21]. Its 
value is taken in [− 1,1], the closer to 1 the more perfect 
the prediction accuracy, above 0.5 is better, and greater 

than 0.7 indicates a high accuracy. The Brier Score is used 
to evaluate the calibration of the model and takes values 
in [0,1], the closer to 0 the better the calibration of the 
model, and less than 0.25 indicates that the calibration is 
acceptable [22]. Calibration curves were used as a com-
plementary illustration of the calibration degree of the 
model. Decision curve analysis (DCA) is used to evaluate 
the clinical utility of the model in decision-making. Vari-
ous evaluation metrics were combined to select the best 
machine learning algorithm prediction model. Shapely 
Additive exPlanations (SHAP) values were used to inter-
pret the best machine learning models [23].

All statistical analyses, model construction and vali-
dation in this study were based on R software (version 
4.1.3).

Results
After screening based on inclusion and exclusion crite-
ria, 805 patients were finally included in the study, and 
75 (9.3%) patients suffered from POP, and the entire pro-
cess of screening and analysis is shown in the flow chart 
(Fig.  1). The entire dataset was randomly divided 70:30 
into a training set (n = 563) and a validation set (n = 242), 
and there were roughly no statistically significant differ-
ences between the two data (Additional file  1: S1.). We 
extracted 28 variables from each patient, and the patient 
characteristics in the training set are shown in Table 1.

To avoid multicollinearity among the variables included 
in the model, LASSO regression was used to screen the 
features included in the model, and the results showed 
that when the lambda value was chosen as lambda.min 
(0.01331355), a total of nine features with nonzero coef-
ficients were screened (Fig.  2), namely Age, CI, COPD, 
WBC, HB, GLU, STB GLOB, and Ka. Further correla-
tion analysis was performed to analyze the correlations 
among these nine variables and a correlation heatmap 
was drawn (Fig. 3). The correlations of all variables were 
less than 0.4, indicating that there were no significant 
correlations among the screened variables. The screened 
variables were used as features to construct prediction 
models using seven machine learning algorithms (CART, 
GBM, KNN, LR, NNet, RF, XGBoost).

The performance of the models constructed by each 
algorithm was determined by resampling with ten times 
tenfold cross validation. The AUC values were calcu-
lated based on the ROC curves.The AUC values (95% 
confidence interval) of CART, GBM, KNN, LR, NNet, 
RF, and XGBoost algorithms in the training set (Fig. 4a) 
were 0.981 (0.971, 0.991), 0.965 (0.945, 0.985), 0.969 
(0.956, 0.983) 0.983), 0.784 (0.72, 0.849), 0.849 (0.794, 
0.904), 0.978 (0.96, 0.996), and 0.996 (0.992, 0.999); the 
AUC values (95% confidence interval) in the validation 
set (Fig. 4b) were 0.997 (0.993, 1), 0.991 ( 0.982, 1), 0.983 
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(0.968, 0.997), 0.75 (0.658, 0.841), 0.907 (0.855, 0.958), 
0.99 (0.979, 1), and 0.998 (0.994, 1), respectively (Table 2). 
The ROC curves of the models constructed by each algo-
rithm are shown in Additional file  1: S2-S15. Accuracy, 
sensitivity, specificity, Kappa value, and MCC value as 
additional descriptions of the predictive ability of the 
models are shown in Table  2. For datasets with unbal-
anced distribution of results, the MCC value reflects 
the actual predictive ability of the model better than the 
AUC value. The MCC values show that only the mod-
els constructed by KNN and XGBoost algorithms have 
good accuracy. The Brier scores of CART, GBM, KNN, 
LR, NNet, RF, and XGBoost algorithms in the training 
set are: 0.038, 0.038, 0.047, 0.075, 0.065, 0.041, and 0.017, 
respectively; in the validation set are: 0.023, 0.029, 0.051, 

0.081, and 0.058, 0.042, 0.016, respectively (Table  2). 
The Brier Score of each model is less than 0.25, indicat-
ing that the calibration degree of each model is fine. The 
calibration curves, as a supplement to the calibration 
degree, are shown in Additional file  1: S16–S29 for the 
models constructed by each algorithm. The DCA curves 
show that in both the training set (Fig. 4c) and the valida-
tion set (Fig. 4d), the models achieve higher net returns 
than the "all-intervention" or "no-intervention" strategies 
over a wide range of thresholds. The DCA curves of the 
models constructed by each algorithm are shown in S30-
S43. Combining the results of each model performance 
evaluation, the model constructed by the XGBoost algo-
rithm shows the best performance. We further plotted a 
summary plot of SHAP values to interpret the XGBoost 

Patients hospitalized for hip fractures from May 2016 to November 2022 (n =1311)

Exclusion:
Age <60 years old (n =207);
Pathological fracture (n =2);
Multiple injuries (n =57);
Combined cancer, acute cerebrovascular disease, and
have been bedridden for a long time before fracture (n
=60);
Missing data >20% (n =41);
Non-surgical treatment (n =118);
Preoperative diagnosis of pneumonia (n =21).

Patients finally included in the analysis (n =805)

Training set (n =563) Validation set (n =242)

Filter variables ValidationMachine learning algorithms prediction 
models (CART, GBM, KNN, LR, NNet, 

RF and XGBoost )

Receiver operating 
characteristic curve

Brier 
Score 

Decision 
curve analysis

Best Machine Learning Algorithm Model

Accuracy, 
Sensitivity, 
Specificity, 

Kappa, MCC 

Fig. 1 Flowchart of data screening and analysis
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model results (Fig.  5). For each feature, a point corre-
sponds to a patient, and the position of the point on the 
x-axis (i.e., the actual SHAP value) indicates the effect 
of the feature on the model output for that particular 
patient. The vertical coordinates show the importance of 
the features, with Age, STB, and GLU being the top three 
variables important to the model.

Discussion
Predictive tools are becoming increasingly common 
in clinical practice, and these tools are often developed 
based on data sets to be used for clinical prognosis and 
diagnosis prediction [24–27]. Traditional linear regres-
sion and supervised machine learning algorithms are 
commonly used to construct models. In this study, pre-
dictive models of machine learning algorithms were 
constructed to predict the risk of pneumonia after hip 
fracture surgery in elderly people based on the early 
admission data of patients. This study constructed mod-
els based on seven commonly used machine learning 
algorithms, and the model based on the XGBoost algo-
rithm performed best in terms of model performance. 
The model constructed in this study can identify patients 
at high risk of postoperative pneumonia after hip fracture 
at an early stage of hospital admission. Early intervention 
in high-risk patients can prevent postoperative pneumo-
nia to a certain extent, improve patient prognosis and 
reduce the medical burden.

It has been reported that China’s aging population over 
60 years of age has reached 249 million as of 2018, and 
this population is expected to exceed 450 million by 2050 
[28]. As the population ages, the number of hip frac-
tures will continue to increase. As the "last fracture of 
life", hip fractures are essential to receive surgical treat-
ment. Surgical treatment can significantly reduce the 

Fig. 2 The potential risk factors were selected using the LASSO regression. a Trend graph of variance filter coefficients. Each color curve represents 
a trend in variance coefficient change. b Graph of cross-validation results. The vertical line on the left side represents λ min, and the vertical line 
on the right side represents λ 1se. λ min refers to the λ value corresponding to the minimum mean squared error (MSE) among all λ values; λ 1se 
refers to the λ value corresponding to the simplest and best model obtained after cross-validation within a square difference range of λ min

Fig. 3 Heatmap of correlation analysis between variables
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1-year mortality rate of patients [29]. POP is the most 
common postoperative complication of hip fracture in 
the elderly, with an incidence of 4.9% to 15.2% [30–32]. 
POP is strongly associated with many short-term and 
long-term prognoses, including prolonged hospital stays, 
ICU admissions, readmission rates, and mortality [33]. 
Therefore, the ability to reduce the incidence of POP by 
intervening earlier would provide many benefits to the 
patient, the patient’s family, and the social health care 
system. A number of variables have been found to be 
risk factors for POP after hip fracture, such as preopera-
tive hypoproteinemia, COPD, CI, age, male, anemia, and 
diabetes mellitus [30, 32, 34]. In addition, surgery-related 
factors, such as time from injury to surgery, duration of 

surgery, and type of anesthesia, have also been shown to 
be high-risk factors for POP [32, 35]. The results of our 
analysis were similar to theirs. The variables we included 
in the models have been shown to be associated with 
postoperative pneumonia in many studies [36, 37].

A nomogram has been constructed by Zhang et  al. 
[38] and Xiang et  al. [35] for predicting pneumonia 
after hip fracture surgery in the elderly. Both of their 
nomograms have good AUC values (0.84 and 0.905, 
respectively), however simply reporting AUC values 
for data with an unbalanced distribution of dichoto-
mous results is not sufficient. Even more important 
is the ability of the model to predict positive events. 
Our model addresses this issue well by reporting MCC 

Fig. 4 ROC curves and DCA curves for each model in the training and validation sets. a ROC curves in the training set. b ROC curves 
in the validation set. c DCA curves in the training set. d DCA curves in the validation set
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values. Furthermore, the variables they included in 
their analysis all included variables related to surgery, 
such as time of surgery, time from injury to surgery, and 
type of surgery. This prevents the identification of high-
risk patients early in their admission and timely inter-
vention. However, the variables included in the model 
for this study could be collected quickly and easily in 
all regions, which facilitated the use of the tool. More 
importantly, we are the first study to apply machine 
learning algorithms to predict pneumonia after hip 
fracture surgery. Based on the current exploration in 
the field of artificial intelligence, it is necessary to apply 
common machine learning algorithms to this field for 
experimentation.

However, there are still some limitations in this study. 
(1). This is a retrospective study, and retrospective bias 
and selection bias of the data are difficult to avoid. (2). 
All data were obtained from a single center, and there 
was some bias in the selection of the population, so 

there may be some limitations in the application of the 
model to populations in other regions. (3). The amount 
of data included in the analysis was small. Although the 
sample size of this study met the basic requirements 
for constructing the model, the sample size was still 
not large enough [39, 40]. In particular, a sufficiently 
large sample size is required to construct models for 
machine learning algorithms. Based on these, we need 
a large sample size of multicenter prospective studies 
for further validation of this study.

Summary
In this study, seven machine learning algorithms, 
CART, GBM, KNN, LR, NNet, RF, and XGBoost, were 
used to construct models to predict postoperative 
pneumonia in elderly people with hip fracture. The 
model based on XGBoost algorithm has excellent per-
formance and can be used to clinically assist physicians 
in decision making to identify high-risk patients early 
in hospital admission and intervene earlier.

Table 2 Evaluation metrics of the models constructed by each algorithm

Train Training set

Valid Validation set

AUC  Area under the curve

ACC  Accuracy

SEN Sensitivity

SPE Specificity

MCC Matthews correlation coefficient

AUC ACC SEN SPE Kappa Brier score MCC

Train

CART 0.981 0.893 1 0.883 0.577 0.038 0.637

GBM 0.965 0.94 0.843 0.949 0.684 0.038 0.694

KNN 0.969 0.957 0.941 0.959 0.777 0.047 0.788

LR 0.784 0.703 0.843 0.689 0.228 0.075 0.319

NNet 0.849 0.831 0.765 0.838 0.37 0.065 0.42

RF 0.978 0.924 0.941 0.922 0.651 0.041 0.682

XGBoost 0.996 0.959 1 0.955 0.794 0.017 0.881

Valid

CART 0.997 0.963 1 0.959 0.822 0.023 0.835

GBM 0.991 0.938 1 0.931 0.729 0.029 0.757

KNN 0.983 0.975 0.917 0.982 0.866 0.051 0.867

LR 0.75 0.529 0.917 0.486 0.133 0.081 0.242

NNet 0.907 0.793 0.917 0.78 0.376 0.058 0.459

RF 0.99 0.905 1 0.894 0.627 0.042 0.676

XGBoost 0.998 0.971 1 0.968 0.857 0.016 0.866
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