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Abstract 

Background Precise pedicle screw placement of the subaxial cervical spine is difficult. Not every hospital 
is equipped with a guidance system that can provide effective help. Computed tomography (CT) scanning is almost 
a routine preoperative examination for cervical spine surgery in all hospitals. Appropriate measurement and analysis 
of the CT images could assist optimal cervical pedicle screw placement. The purpose of this study is to propose a new 
and universal method using computed tomography (CT) morphological parameters analysis to assist optimal cervical 
pedicle screw placement from C3 to C7.

Methods A localization system with six parameters was designed based on preoperative CT reconstruction to guide 
subaxial cervical spine pedicle screw placement. The six parameters were distance from the starting point to the mid-
line [D1], distance from the starting point to the lower edge of the inferior articular process [D2], transverse section 
angle [TSA], sagittal section angle [SSA], pedicle width [PW], and pedicle height [PH]. The six parameters were ana-
lyzed in 53 participants.

Results Combining D1 and D2 could localize the entrance of the pedicle screw, and we concluded that D1 and TSA 
and D2 and SSA could be a new standard for determination of the transverse and sagittal orientation of the pedicle 
screw. The six parameters were closely related to the patient’s gender, height, and weight. PH and PW were linearly 
correlated and could guide selection of the appropriate pedicle screw. SSA was an independent parameter of the rel-
evant vertebral body, and changes in SSA had nothing to do with the curvature or posture of the cervical spine.

Conclusions Understanding and applying the six-parameter localization system are essential for achieving accurate 
and optimal pedicle screw placement in subaxial cervical spine, regardless of cervical sagittal alignment.
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Introduction
The subaxial cervical pedicle screw placement tech-
nique has been widely used in clinical practice since it 
was first described by Abumi [1] in 1994. However, this 
delicate surgical procedure is associated with a risk of 
major neurovascular injury. The cervical pedicles are 
slim and small, with great variation in their directions; 
therefore, accurate pedicle screw placement is essential 
to prevent spinal cord, nerve root, and vertebral artery 
iatrogenic injury [2, 3]. Precise pedicle screw placement 
requires information regarding at least two important 
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anatomical concepts: the pedicle screw insertion point 
and the pedicle screw route, including direction and 
depth. The establishment of an insertion point is the 
first and key step to perfect pedicle screw placement. 
Further, the insertion route in accordance with the axis 
of the pedicle screw can make maximum use of the 
pedicle coronal and sagittal diameter and is the safest 
route [4].

Freehand pedicle screw placement mainly depends 
on the surgeon’s judgment of relevant anatomical land-
marks during the operation [5, 6]. This localization 
method is dangerous and difficult however, especially 
for inexperienced surgeons, because the anatomical 
features vary with race, gender, height, weight, deform-
ity, and degeneration. Therefore, the surgeon’s experi-
ence and feel are critical in these situations.

Alternatively, a guidance system such as O-arm-based 
three-dimensional (3D) navigation, 3D model, naviga-
tion templates, Doppler donography, robotic guidance 
system [7–12], or augmented reality-based navigation 
[13, 14] is needed to prevent placement failure. The 
use of these resources is limited because of their high 
cost and steep associated learning curve however, and 
they cannot be widely applied in all kinds of hospitals 
[15, 16]. Fortunately, computed tomography (CT) scan-
ning has become a routine preoperative examination 
in spinal surgery patients. Moreover, CT reconstruc-
tion is accurate, and a 3D (coronal sagittal, and cross-
sectional) surface can be easily obtained at any angle to 
meet the requirements of personalized measurement 
[17, 18].

The current study investigated the establishment of 
a new subaxial cervical pedicle radiographic system 
utilizing preoperative CT scanning and reconstruc-
tion, which could determine the pedicle’s detailed 

morphology and has the advantages of individualized 
application, high accuracy, and easy identification.

Patients and methods
Study participants
Fifty-three patients (31 men, 22 women) with differ-
ent cervical spine diseases were enrolled in the study. 
Baseline characteristics of the participants are shown 
in Table  1. The inclusion criteria were performance 
of supine CT (Philips ICT) of the cervical spine, and 
image data analysis in the Image Clinical Application 
and Platform and 3-matic software (Materialise, Bel-
gium). Patients with pedicle deformity and destruction 
of the cervical spine because of spinal tumor, infection, 
or trauma were excluded. The study was approved by the 
institutional ethics review board. Written informed con-
sent was obtained from each patient.

Imaging measurement
The axis of the pedicle was defined as the intersection 
line of the equally divided transverse plane (plane B) and 
vertical plane (plane A) of the pedicle. The intersection 
point of the axis on the cortex of the posterior end of the 
pedicle is the starting point (SP). LP is the lowest point 
on the lower edge of the inferior articular process on the 
line where plane A intersects the posterior bone surface. 
SP was used as the best entry point of the pedicle screw, 
and the axis of the pedicle was used as the best insertion 
route.

Six parameters were measured based on CT recon-
struction derived from each patient (Fig.  1). Pedicle 
width (PW) was the narrowest width of the pedicle in 
the equally divided transverse plane, which is perpen-
dicular to the axis of the pedicle. Pedicle height (PH) was 
the shortest height of the pedicle in the equally divided 
vertical plane, which is perpendicular to the axis of the 

Table 1 Baseline of the participants

PW = pedicle width; D1 = the distance from the starting point to midline; TSA = transverse section angle; PH = pedicle height; D2 = the distance from the starting point 
to the lowest point; SSA = sagittal section angle

Age (yrs ± SD) 59.2 ± 9.0 Sex (male/female) 31/22

Parameters C3 C4 C5 C6 C7

Six parameters from L1-L5 (Mean ± SD)

PW(mm) 6.25 ± 0.87 6.22 ± 0.91 6.37 ± 081 6.74 ± 0.91 7.47 ± 1.12

D1(mm) 21.74 ± 1.65 22.66 ± 1.95 23.51 ± 1.97 22.84 ± 2.11 20.96 ± 2.40

TSA(°) 46.29 ± 5.37 48.78 ± 5.31 47.40 ± 5.35 42.35 ± 5.48 34.31 ± 7.04

PH(mm) 7.29 ± 1.03 7.89 ± 1.08 7.21 ± 0.94 7.33 ± 1.09 8.19 ± 1.20

D2(mm) 9.78 ± 2.04 9.52 ± 2.08 10.02 ± 2.04 10.17 ± 2.19 10.23 ± 2.31

SSA(°) 102.10 ± 9.13 100.40 ± 10.31 90.82 ± 8.12 88.21 ± 8.83 95.65 ± 9.50

C3-7 Cobb° = 5.0 ± 10.6°
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pedicle. D1 was the distance from SP to the midline of 
the spinous process. D2 was the straight-line distance 
from SP to LP. The transverse section angle (TSA) was 
the angle of the axis and middle line on the transverse 
plane. The sagittal section angle (SSA) was the angle of 
the axis and D2 line on the sagittal plane. Both pedicles 
were measured. The height and weight of each patient 
were recorded, changes in all six parameters from C3 
to C7 were analyzed, and correlations between each of 
them were assessed. The system was based on CT scan-
ning, which allowed us to obtain accurate measurement 
data for the pedicle with abnormal anatomical structure 
such as deformity or degeneration. Software measure-
ment can reduce errors such that the accuracy of linear 
data reaches 0.01 mm and the angle is equivalent to 0.01°.

Statistical analysis
All parameters were measured twice by the same 
observer on two different occasions and once by another 

observer to determine intraobserver and interobserver 
reliability, which was evaluated via intraclass correlation 
coefficients (ICCs). The reliability of intraobserver and 
interobserver measurements was consistent if the ICC 
was between 0.82 and 0.98. Measurements obtained by 
one observer were used in the analysis.

Measurement data were expressed as mean ± SD. The 
chi-square test and matched or unmatched t-test were 
used to evaluate differences between two groups. Pear-
son’s correlational coefficient (r) was used to assess cor-
relations between variables. Statistical significance was 
set at p < 0.05. Correlation coefficients were considered 
clinically statistically significant if r ≥ 0.3. All data were 
analyzed via SPSS version 22.0 (SPSS, Chicago, IL).

Results
Changes in the six parameters from C3 to C7
There were no significant differences in any of the six 
parameters between both sides of the pedicles from the 

Fig. 1 Schematic diagram of parameter measurements. A Three-dimensional reconstruction of a cervical vertebral body from a CT scan, 
with the pedicle equally divided by plane A and plane B; B Transverse section of the vertebral body after being cut by plane B. The white dotted line 
is the axis of the pedicle; SP = starting point; PW = pedicle width; D1 = distance from SP to midline; TSA = transverse section angle; C Sagittal section 
of the vertebral body after being cut by plane A. LP = lowest point; PH = pedicle height; D2 = straight-line distance from SP to LP; SSA = sagittal 
section angle; D Posterior view of the vertebral body
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same cervical segment. PW gradually increased from C3 
to C7. D1 gradually increased first, reached a maximum 
at C5, and then gradually decreased. TSA was largest at 
C4 then decreased gradually from C4 to C7, and TSA 
at C3 was similar to that at C5. The PHs of C3, C5, and 
C6 were low, whereas those of C4 and C7 were relatively 
high. D2 remained similar from C3 to C7. SSA gradually 
decreased from C3 to C6 and slightly increased at C7 
(Fig. 2).

With the exception that in C5 PH did not differ signif-
icantly in men and women, PW, PH, and D1 were gen-
erally greater in males than in females in all segments. 
There were no significant differences in D2, TSA, or SSA 
between males and females in any segments, except that 
the TSA of C7 was greater in males (Fig. 3).

Linear correlations between PW and PH
There were positive correlations between PW and PH in 
all cervical segments (Fig.  4). From C3 to C7 the slope 
and Y-intercept were similar (Table 2), indicating that the 
increase in PW has a similar effect on the increase in PH, 
the ellipse cross-sectional area of the pedicle with H as 
the long axis gradually increased from C3 to C7.

Linear correlations between D1 and TSA
There were positive correlations between D1 and TSA 
in all cervical segments (Fig.  5), and the linear Pear-
son’s correlational coefficient between D1 and TSA was 

the highest in C7 (Table  2). Therefore, for a segment, 
the more externally deviated the SP the larger the TSA, 
and conversely the more internally deviated the SP the 
smaller the TSA.

Linear correlations between weight and PW, weight 
and PH, weight and D1, height and PW, height and PH, 
and height and D1
Both height and weight were positively correlated with 
PW, PH, and D1 (Fig.  6), indicating that patients with 
greater height and weight had larger pedicle cross sec-
tions, and the SP was more externally deviated. The linear 
Pearson’s correlational coefficient between height, weight 
and PH, D1 was better than that of PW, and the closer to 
the upper segment from C7–C3, the better the linear fit 
was (Tables 3 and 4). From C3 to C7 all slopes exhibited 
an upward trend, and the slope value was the largest at 
C7, indicating that increases in height and weight had the 
greatest impact on increases in PW, PH, and D1 in the C7 
segment.

Linear correlations between Cobb angle and PH, Cobb 
angle and D2, and Cobb angle and SSA
Cobb angle was not significantly correlated with PH, D2, 
or SSA (Fig. 7, Table 5), indicating that the application of 
these sagittal parameters does not need to consider cur-
vature or posture of the cervical spine.

Fig. 2 Scatter plot showing changes in the six parameters from C3 to C7. Data are presented as means ± SD. *p < 0.05, **p < 0.01, ***p < 0.001, 
****p < 0.0001
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Discussion
The current study focused on the shape of the pedicle and 
used six parameters based on CT scanning to establish a 
coordinate system to guide cervical spine pedicle screw 
placement. First D1 and D2 were used to coordinate 

positioning in this system, to replace the inaccurate but 
traditional method which relies on landmarks (articular 
mass, inferior articular process of the cephalad vertebra, 
and lateral vertebral notch) for the SP for placement of 
the pedicle [1, 19–22]. Unlike D1, which has gained much 

Fig. 3 Scatter plot showing comparisons of the six parameters between men and women. Data are presented as the means ± SD. *p < 0.05, 
**p < 0.01, ***p < 0.001, ****p < 0.0001
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attention and has been the subject of extensive study, D2 
was considered first in this study and deemed worthy of 
more attention because its value is relatively fixed in all 
segments. No previously published study has combined 
these two parameters to determine the insertion point 
of the pedicle. We have previously used D2 in clinical 
practice and found that it can be easily measured via CT 
reconstruction preoperatively, and during pedicle screw 
placement from C3 to C7.

Given that most preoperative preparations for pedi-
cle screw placement only focus on the narrowest PW to 
choose the appropriate width of the pedicle screw, PW is 
often measured clinically. In the current study there was 
a linear correlation between PW and the pedicle’s nar-
rowest PH, which can be depicted by an equation. We 
can incorporate PW—the most common clinical pedicle 
data—into the equation, obtain PH, and further guide 
the choice of pedicle screw size. At the same time the 
sagittal plane of the pedicle has a larger fault tolerance 
space, which means that the offset of the pedicle screw in 
the sagittal plane is comparatively safer than that in the 
transverse plane.

After confirming the SP of the pedicle screw by D1 and 
D2, and choosing the appropriate pedicle screw based on 
PW and PH, the angle of pedicle screw placement can be 

guided by TSA and SSA. TSA can be accurately measured 
via CT scanning, which is also a common and necessary 
parameter in surgical planning [20, 23]. Moreover, TSA 
was related to the sequence of the vertebra. The lower 
the vertebral body the larger the TSA, and D1 will also be 
larger. There was a positive correlation between D1 and 
TSA, which may be explained as a right triangle effect. 
D1 can be considered the right-angle edge, and TSA the 
opposite angle. The larger TSA is, the longer D1 is. For 
this reason TSA and D1 were the parameters used to 
confirm the transverse orientation of the pedicle screw.

The correlations between PW and PH, and D1 and 
SSA can be explained by examining the development of 
the pedicle. As the spine gradually ossifies after chon-
drification at the 6th week of embryonic development, 
three main ossification centers play an important role; 
one in the centrum, and one each on either side of the 
vertebral arch. Longitudinal and latitudinal growth of the 
vertebral body accompany the growth, development, and 
movement of the whole body. At the same time, the sec-
ond primary ossification center and the mechanical load 
should also be considered [24–26]. However, these were 
not the focus of the current study.

The aim of the present study was to facilitate more 
individualized and accurate pedicle screw placement. 

Fig. 4 Linear regression between PW and PH

Table 2 Linear correlation between PW and PH, D1 and TSA

* means multiply by

PW = pedicle width; PH = pedicle height; D1 = the distance from the starting point to midline; TSA = transverse section angle

Linear correlation Segment Equation R Slope Y-intercept P

X = PW
Y = PH

C3 Y = 0.5044*X + 4.135 0.4221 0.1062 0.6705  < 0.0001

C4 Y = 0.4544*X + 5.058 0.3816 0.1079 0.6784  < 0.0001

C5 Y = 0.3678*X + 4.864 0.3155 0.1085 0.6969 0.0010

C6 Y = 0.4220*X + 4.482 0.3517 0.1101 0.7488 0.0002

C7 Y = 0.5242*X + 4.276 0.4898 0.0915 0.6911  < 0.0001

X = D1
Y = TSA

C3 Y = 1.739*X + 8.497 0.5349 0.2693 5.870  < 0.0001

C4 Y = 1.371*X + 17.71 0.5026 0.2313 5.260  < 0.0001

C5 Y = 1.052*X + 22.68 0.3868 0.2458 5.798  < 0.0001

C6 Y = 1.191*X + 15.15 0.4575 0.2269 5.205  < 0.0001

C7 Y = 2.005*X − 7.720 0.6845 0.2094 4.418  < 0.0001

Fig. 5 Linear regression between D1 and TSA
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With respect to individualization, the first considerations 
in adults are differences in gender, height, and weight. 
Pedicles in males and individuals of greater heights and 
weights were larger than those of females and individuals 
of smaller heights and weights. This is due to the innate 
proportional development of individuals [3, 27, 28].

We considered SSA to be another essential parameter 
that is often overlooked relative to TSA. Routine CT 
examination is in the supine position, and a change to 
the prone position during the operation would inevitably 
lead to data changes with respect to the sagittal alignment 

of the cervical spine. Therefore, if the sagittal angula-
tion is positioned in the horizontal plane accuracy will 
be affected [3, 29], and if the lower edge of the vertebral 
body is used for positioning it is difficult to grasp during 
the operation [30, 31]. In the current study SSA was asso-
ciated with each vertebral body’s D2 parameter, which 
can be understood as the lamina line. It is not associated 
with the sequence of vertebrae, rather it can be more 
accurately determined via direct visualization during the 
operation. The above-described six parameters obtained 
via CT scanning in the supine position to guide screw 

Fig. 6 Linear correlations between weight and PW, weight and PH, weight and D1, height and PW, height and PH, and height and D1

Table 3 Linear correlation between Height and PW, Height and PH, Height and D1

* means multiply by

PW = pedicle width; PH = pedicle height; D1 = the distance from the starting point to midline

Linear correlation Segment Equation R Slope Y-intercept P

X = Height Y = PW C3 Y = 3.674*X + 0.09572 0.3198 1.265 2.103 0.0049

C4 Y = 3.274*X + 0.7565 0.2857 1.277 2.123 0.0124

C5 Y = 3.041*X + 1.275 0.3060 1.100 1.828 0.0072

C6 Y = 4.367*X − 0.5627 0.3953 1.179 1.960 0.0004

C7 Y = 3.437*X + 1.579 0.2928 1.305 2.169 0.0103

X = Height Y = PH C3 Y = 8.169*X − 6.304 0.6107 1.232 2.047  < 0.0001

C4 Y = 7.081*X − 3.858 0.4969 1.438 2.390  < 0.0001

C5 Y = 6.603*X − 3.720 0.5611 1.132 1.882  < 0.0001

C6 Y = 5.959*X − 2.580 0.4253 1.474 2.450 0.0001

C7 Y = 5.460*X − 0.9711 0.3589 1.650 2.744 0.0015

X = Height Y = D1 C3 Y = 13.40*X − 0.3939 0.6144 2.000 3.325  < 0.0001

C4 Y = 14.26*X − 0.8643 0.5783 2.338 3.886  < 0.0001

C5 Y = 15.65*X − 2.238 0.6209 2.296 3.817  < 0.0001

C6 Y = 13.55*X + 0.4598 0.4749 2.920 4.854  < 0.0001

C7 Y = 7.138*X + 9.145 0.2425 3.320 5.519 0.0348
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Table 4 Linear correlation between Weight and PW, Weight and PH, Weight and D1

* means multiply by

PW = pedicle width; PH = pedicle height; D1 = the distance from the starting point to midline

Linear correlation Segment Equation R Slope Y-intercept P

X = Weight
Y = PW

C3 Y = 0.02532*X + 4.522 0.3501 0.00664 0.4612 0.0002

C4 Y = 0.03014*X + 4.157 0.3984 0.00680 0.4726  < 0.0001

C5 Y = 0.02250*X + 4.834 0.3341 0.00622 0.4322 0.0005

C6 Y = 0.03062*X + 4.643 0.4022 0.00683 0.4746  < 0.0001

C7 Y = 0.01784*X + 6.250 0.1911 0.00898 0.6240 0.0497

X = Weight
Y = PH

C3 Y = 0.04194*X + 4.420 0.4855 0.00740 0.5143  < 0.0001

C4 Y = 0.04006*X + 5.143 0.4447 0.00791 0.5496  < 0.0001

C5 Y = 0.02922*X + 5.208 0.3722 0.00714 0.4962  < 0.0001

C6 Y = 0.03112*X + 5.196 0.3409 0.00841 0.5847 0.0004

C7 Y = 0.03596*X + 5.732 0.3600 0.00914 0.6348 0.0002

X = Weight
Y = D1

C3 Y = 0.06820*X + 17.07 0.4944 0.01176 0.8166  < 0.0001

C4 Y = 0.06795*X + 18.01 0.4182 0.01447 1.005  < 0.0001

C5 Y = 0.06480*X + 19.07 0.3947 0.01479 1.028  < 0.0001

C6 Y = 0.03891*X + 20.18 0.2212 0.01682 1.168 0.0227

C7 Y = 0.002969*X + 20.76 0.0148 0.01967 1.366 0.8803

Fig. 7 Linear correlations between Cobb angle and PH, Cobb angle and D2, and Cobb angle and SSA

Table 5 Linear correlation between Cobb and PH, Cobb and D2, Cobb and SSA

* means multiply by

PH = pedicle height; D2 = the distance from the starting point to the lowest point; SSA = sagittal section angle

Linear correlation Segment Equation R Slope Y-intercept P

X = Cobb
Y = PH

C3 Y = 0.009390*X + 7.245 0.0959 0.00956 0.1104 0.3283

C4 Y =  − 0.01124*X + 7.938 0.1100 0.00995 0.1150 0.2616

C5 Y = 0.005081*X + 7.183 0.0571 0.00871 0.1006 0.5612

C6 Y =  − 0.008983*X + 7.368 0.0867 0.01012 0.1168 0.3766

C7 Y =  − 0.01101*X + 8.245 0.0972 0.01106 0.1277 0.3217

X = Cobb
Y = D2

C3 Y = 0.02339*X + 9.667 0.1213 0.01877 0.2167 0.2156

C4 Y =  − 0.01651*X + 9.601 0.0837 0.01927 0.2225 0.3937

C5 Y = 0.01121*X + 9.967 0.0580 0.01892 0.2184 0.5548

C6 Y = 0.02126*X + 10.07 0.1027 0.02019 0.2331 0.2948

C7 Y =  − 0.01897*X + 10.32 0.0867 0.02137 0.2467 0.3767

X = Cobb
Y = SSA

C3 Y = 0.1167*X + 101.6 0.1350 0.08398 0.9695 0.1676

C4 Y = 0.03185*X + 100.2 0.0326 0.09564 1.104 0.7398

C5 Y =  − 0.07320*X + 91.17 0.0953 0.07501 0.8659 0.3313

C6 Y = 0.03906*X + 88.02 0.0467 0.08191 0.9456 0.6345

C7 Y = 0.1238*X + 95.06 0.1376 0.08738 1.009 0.1594
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placement are accurate, and will not change regardless of 
how the position changes. More importantly, they are not 
affected by lordosis or kyphosis, degeneration and hyper-
plasia, imbalance or deformity of the cervical spine.

Notably we do not advocate memorizing the dates of 
the pedicle’s size and angle. Instead, each pedicle of each 
patient must be carefully measured before surgery so as 
to obtain 6 parameters that can be individually and accu-
rately applied to surgery.

The current study had some limitations. The size of 
the sample was relatively small, and it was restricted to 
Chinese adults. Data measurements are likely to dif-
fer in other races and in children, but notably the same 
measurement methodology could be used. Secondly, the 
primary aim of the study was to provide an effective aid 
to assist freehand pedicle screw placement, and it is not 
appropriate to rely solely on the measurement data to 
place screws mechanically. The experience of the surgeon 
and intraoperative feel are still very important. Lastly, 
although we could precisely fix the SP position and the 
entrance angle, the system needs convenient devices with 
which to apply the parameters during surgery. There-
fore, we are currently conducting further studies aimed 
at developing a new locating device based on the system, 
and broader clinical application of the system.

Conclusion
Our localization system based on six parameters derived 
from CT reconstruction, namely D1, D2, TSA, SSA, 
PW, and PH, contributes to improved understanding of 
pedicle anatomy and helps improve the accuracy of cer-
vical spine pedicle screw placement regardless of cervi-
cal sagittal alignment. Considering the accuracy, ease of 
use, and low cost of the system, it is expected to be widely 
used in clinical practice.
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