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Abstract 

Background Huangqi Guizhi Wuwu decoction (HQGZWWD) has been used to treat and prevent deep vein throm-
bosis (DVT) in China. However, its potential mechanisms of action remain unclear. This study aimed to utilize network 
pharmacology and molecular docking technology to elucidate the molecular mechanisms of action of HQGZWWD in 
DVT.

Methods We identified the main chemical components of HQGZWWD by reviewing the literature and using a 
Traditional Chinese Medicine Systems Pharmacology (TCMSP) database. We used GeneCards and Online Mendelian 
Inheritance in Man databases to identify the targets of DVT. Herb-disease-gene-target networks using Cytascape 3.8.2 
software; a protein–protein interaction (PPI) network was constructed by combining drug and disease targets on the 
STRING platform. Additionally, we conducted Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) enrichment analyses. Finally, molecular docking verification of active components and core protein targets 
was conducted.

Results A total of 64 potential targets related to DVT were identified in HQGZWWD, with 41 active components; 
quercetin, kaempferol, and beta-sitosterol were the most effective compounds. The PPI network analysis revealed 
that AKT1, IL1B, and IL6 were the most abundant proteins with the highest degree. GO analysis indicated that DVT 
treatment with HQGZWWD could involve the response to inorganic substances, positive regulation of phosphoryla-
tion, plasma membrane protein complexes, and signaling receptor regulator activity. KEGG analysis revealed that the 
signaling pathways included pathways in cancer, lipid and atherosclerosis, fluid shear stress and atherosclerosis, and 
the phosphatidylinositol 3-kinases/protein kinase B(PI3K-Akt) and mitogen-activated protein kinase (MAPK) signaling 
pathways. The molecular docking results indicated that quercetin, kaempferol, and beta-sitosterol exhibited strong 
binding affinities for AKT1, IL1B, and IL6.
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Conclusion Our study suggests that AKT1, IL1B, and IL6 are promising targets for treating DVT with HQGZWWD. 
The active components of HQGZWWD likely responsible for its effectiveness against DVT are quercetin, kaempferol, 
and beta-sitosterol, they may inhibit platelet activation and endothelial cell apoptosis by regulating the PI3K/Akt and 
MAPK signaling pathways, slowing the progression of DVT.

Keywords Huang–Qi–Gui–Zhi–Wu–Wu decoction, Deep vein thrombosis, Network pharmacology, Molecular 
docking, Traditional Chinese medicine

Introduction
Deep vein thrombosis (DVT) is a disease in which blood 
in the deep veins of the limbs abnormally coagulates into 
clots due to damage to the venous wall and stagnation 
of blood flow, leading to narrowing or occlusion of the 
venous lumen [1, 2]. The incidence of DVT is high; for 
example, hospital-acquired DVT after major orthopedic 
surgery can reach 60% [3–5]. The danger lies in the fact 
that detachment of a DVT can cause fatal pulmonary 
embolism with a high mortality rate; it is a crucial cause 
of perioperative and unexpected hospital deaths [6, 7]. 
Low-molecular-weight heparin and vitamin K antago-
nists, such as warfarin and sulodexide, are routinely used 
in clinical practice to prevent DVT [8]; however, adverse 
reactions, mainly bleeding, hematoma formation, and 
decreased hemoglobin concentrations, have been discov-
ered with the long-term, extensive clinical use. Further-
more, there is controversy on anticoagulants preventing 
DVT in patients with cerebral hemorrhage or combined 
blood system diseases [9]. Therefore, the effective pre-
vention of DVT in long-term bedridden patients without 
causing new complications remains an urgent problem 
that needs to be solved.

Traditional Chinese medicine has a long history of 
use for the prevention and treatment of DVT [10]. Tra-
ditional Chinese medicine categorizes DVT as “pulse 
obstruction” and “blood stasis.” [11] Sun Simiao, a 
renowned Chinese physician over a thousand years ago, 
noted in Qian Jin Bei Ji Yao Fang that poor blood circula-
tion is the root cause of thrombosis: “if qi and blood are 
stagnant, there will be pain; if the pulse is blocked, there 
will be swelling, and if stagnation persists for a long time, 
heat will arise.” HQGZWWD is composed of five tradi-
tional Chinese medicines: Huangqi (Hedysarum multi-
jugum maxim, HM), Guizhi (Cinnamomi Ramulus, CR), 
Baishao (Paeoniae Radix Alba, PA), Shengjiang (Zin-
giber officinale Roscoe, ZR), and Dazao (Jujubae Fructus, 
JF) [12]. HQGZWWD is a medicinal formula that pro-
motes blood circulation and nourishes the qi; this was 
reported by Zhang Zhongjing, a medical expert from the 
Eastern Han Dynasty (approximately 154–219 AD), in 
his book “Jin Gui Yao Lue” almost 2000  years ago [13]. 
Additionally, various medical books such as “San Yin Ji Yi 
Bing Zheng Fang Lun” from the Southern Song Dynasty 

(1174 AD), “Zheng Zhi Zhun Sheng: Lei Fang” from the 
Ming Dynasty (1602 AD) and “Yi Fang Ji Jie” from the 
Qing Dynasty recorded the effectiveness of HQGZWWD 
in treating DVT. Studies such as Yuebao have shown 
that using HQGZWWD can enhance hypercoagulabil-
ity in patients who have undergone knee replacement 
surgery while decreasing the likelihood of develop-
ing postoperative DVT [14]. Furthermore, Zhao Zhili 
used HQGZWWD to treat lung cancer accompanied 
by DVT, significantly improving patients’ clinical symp-
toms and considerably shortening the acute or subacute 
period of DVT [15]. Despite its historical significance, 
our understanding of its mechanism primarily relies 
on the traditional Chinese medicine experience passed 
down through generations and clinical observations, 
without any scientific research regarding its molecular 
mechanisms.

The complexity of traditional Chinese medicine stems 
from the lack of adequate quantitative evidence to assess 
its therapeutic efficacy. Typically, traditional Chinese 
medicine involves intricate formulas comprising multi-
ple herbs, with their composition and dosage often based 
on ancient texts and empirical knowledge rather than 
on contemporary scientific research [16]. Its peculiarity 
lies in its exclusive history within China, which has been 
subject to limited theoretical and fundamental investiga-
tions until recently. Consequently, many Western Schol-
ars may not regard it as a science but rather an empirical 
practice lacking any theoretical foundation; these factors 
pose unique challenges to traditional Chinese medicine 
research [17].

Network pharmacology is a novel analytical approach 
that utilizes virtual computing and database retrieval to 
study the mechanisms of disease and drug action within a 
broader biological network. This method provides valua-
ble insights into the pharmacological efficacy and mecha-
nisms of the drugs [18]. The primary objective of network 
pharmacology research is to systematically address sci-
entific challenges at multiple levels, which closely aligns 
with the fundamental concept of treating prediseases in 
traditional Chinese medicine, known as syndrome dif-
ferentiation and treatment [19]. As an emerging research 
methodology, it offers a promising solution to overcome 
obstacles such as inadequate basic research on traditional 
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Chinese medicine [20]. Based on this situation,We uti-
lized network pharmacology methods to establish an 
herb-disease-gene-target network and constructed a 
protein–protein interaction (PPI) network combining 
drug and disease targets. We conducted a Gene Ontol-
ogy (GO) analysis and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) enrichment analysis to identify the 
primary signaling pathways and biological functions. 
Finally, molecular docking was performed to verify func-
tional components and their major targets. In summary, 
our study investigates the main components of HQG-
ZWWD that act on DVT and their molecular biological 
mechanisms using network pharmacology and molecu-
lar docking methods. This study provides a reference for 
future research in this field.

Materials and methods
Screening of the active components in HQGZWWD
The TCMSP platform (http:// tcmspw. com/ tcmsp. php) 
was used to identify the active components of HQG-
ZWWD (accessed on March 15, 2023). Our selection 
criteria were based on the absorption, distribution, 
metabolism, and excretion (ADME) processes. Oral 
bioavailability (OB) is the amount of a drug that enters 
the circulation after entering the human body. How-
ever, drug-likeness (DL) refers to the degree of similarity 
between a compound and known drugs. OB is a repre-
sentative pharmacokinetic parameter in ADME, and DL 
is used as a qualitative concept in drug design to estimate 
the molecular characteristics of drugs [21]. Specifically, 
we screened for components with oral bioavailability 
(OB) ≥ 30% and drug-like properties (DL) ≥ 0.18 to obtain 
the appropriate active compounds [22–25].

Construction of drug active component target network 
and identification of DVT‑predictive targets
We identified the active components of HQGZWWD by 
applying predefined thresholds (OB ≥ 30% and DL ≥ 0.18) 
to the TCMSP database and individually confirmed the 
respective targets. To standardize the target and gene 
symbols, we used the UniProt database (accessed on 
March 16, 2023) for conversion (https:// www. unipr ot. 
org/). To obtain disease targets from the databases, we 
searched for “deep venous thrombosis” as a keyword in 
the OMIM (https:// omim. org/, accessed on March 16, 
2023) and Gene cards databases (https:// www. genec 
ards. org/, accessed on March 16, 2023) [26, 27]. Next, 
we merged these targets, removed duplicates, and iden-
tified the remaining DVT targets. Using Cytascape 
(ver.3.8.2) network visualization software, we constructed 
a “herb-disease-gene-target” network of effective com-
ponents and action targets. Finally, we analyzed network 

characteristics to elucidate the interactions between 
effective components and targets in herbs and diseases.

Construction and analysis of the PPI network
The Search Tool for Retrieving Interacting Genes/Pro-
teins (STRING) (https:// string- db. org/) was used to pre-
dict protein–protein interactions (accessed on March 18, 
2023). The PPI network was created by introducing over-
lapping targets [28]. CytoScope (ver.3.8.2) was used to 
construct a core PPI network.

GO enrichment analysis and KEGG pathway analysis
To elucidate the biological functions and signaling path-
ways associated with DVT, we conducted GO and KEGG 
enrichment analyses using the Metascape database 
(https:// metas cape. org/, accessed on March 18, 2023) 
[29]. GO analysis identified relevant biological processes 
(BP), cellular components (CC), and molecular functions 
(MF). Additionally, KEGG enrichment analysis enabled 
us to identify significant signaling pathways involved in 
these biological processes. The P-value cutoff was estab-
lished as P<0.01, where a lesser P-value signifies a higher 
likelihood of the current result being an authentic enrich-
ment outcome rather than a random occurrence. The 
unit employed in this study was -log 10(P-value), and as 
this value increased, the reliability of the enrichment 
results increased.

Molecular docking
Molecular docking is a theoretical simulation method 
used in drug design to predict the binding modes and 
affinities of molecules by studying their interactions with 
receptors and ligands [30]. AutoDock Tools is a simula-
tion software that facilitates the study of the interactions 
between biomolecules and small-molecule complexes; 
this enables researchers to accurately comprehend how 
protein targets interact with small-molecule compounds 
by simulating the ligand-receptor recognition [31]. In 
this study, we employed molecular docking to investigate 
whether the core components of HQGZWWD, identi-
fied through network pharmacology, could bind to core 
proteins. We selected the top three compounds based on 
degree value from the “herb-disease-gene-target” net-
work’s core components of HQGZWWD and chose the 
top three proteins based on degree value from the PPI 
network’s core targets. The corresponding 3D structure 
files for proteins and small molecule compounds were 
downloaded from the RCSB database (https:// www. rcsb. 
org/, accessed on March 19, 2023) and TCMSP database 
[32], followed by dehydration and hydrogenation before 
importing them into Autodock Tools (ver.1.5.6). The 
small molecule compound was then docked with the pro-
tein as a receptor using a molecular docking method to 

http://tcmspw.com/tcmsp.php
https://www.uniprot.org/
https://www.uniprot.org/
https://omim.org/
https://www.genecards.org/
https://www.genecards.org/
https://string-db.org/
https://metascape.org/
https://www.rcsb.org/
https://www.rcsb.org/
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select the most suitable conformation. Finally, to generate 
a binding mode diagram, we imported the docked pro-
tein and small molecule files prepared using AutoDock 
Tools into PyMOL (ver.1.8.x). Using the ’find-polar con-
tacts-to any atom’ function, we can automatically identify 
hydrogen bonds or other interactions [33].

Results
Extraction of the active components in HQGZWWD
According to the screening criteria, OB ≥ 30% and 
DL ≥ 0.18 were set in the TCMSP database for screening; 
the results showed that 41 active components of HQG-
ZWWD were obtained, as shown in Additional file 1.

Identification of core targets and construction 
of herb‑disease‑gene‑target network
We searched the OMIM and GeneCards databases for 
potential targets related to DVT, removed duplicate 
targets, and identified 1731 potential targets. We then 
sorted the results from TCMSP, removed duplicate 
sites, matched the predicted drug targets with the cor-
responding disease targets, and obtained 64 core targets 
(Fig. 1). To further observe the compound-target interac-
tions, we constructed a "herb-disease-gene-target" net-
work (Fig. 2). The degree refers to the number of nodes 
that interact with a node, and its size represents its core 
degree. The higher the degree value, the more important 
this node is. Our findings indicate that three compounds 
in HQGZWWD are highly correlated with DVT: querce-
tin (C2; degree = 246), beta-sitosterol (C3; degree = 100), 
and kaempferol (C1; degree = 94).

Construction and analysis of the PPI network
The core overlapping diseases and drug component tar-
gets were imported into the STRING database to gener-
ate a PPI network diagram (Fig.  3). Molecular complex 
detection (MCODE) is a novel graph-theoretic clustering 
algorithm that calculates the information of each node in 
a PPI network graph using a k-means clustering algorithm 
to detect dense connection regions in large protein-pro-
tein interactions. Proteins within these regions may have 
similar structures or functions, providing a reference and 
guidance for further research on protein-disease inter-
actions [34]. Target information from this network was 
further analyzed using MCODE, which revealed three 
central gene clusters; these clusters suggested that the 
proteins within them were closely connected and may 
share common functions or expression patterns (Fig. 4). 
Key target proteins were identified using the Cytoscape 
software, with higher degree values indicating stronger 
interactions with other targets. This analysis highlighted 
the potential central targets for HQGZWWD in DVT 

treatment, including AKT1 (degree = 51), IL6 (degree = 
52), and IL1B (degree = 50) (Fig. 5).

GO enrichment analysis and KEGG pathway analysis
GO and KEGG enrichment analyses were conducted to 
better understand the potential pathways and biological 
functions of HQGZWWD in DVT. Figure 6 displays the 
top five results of the GO analysis, which revealed that 
HQGZWWD primarily affected the response to inor-
ganic substances (BP), positive regulation of phosphoryl-
ation (BP), plasma membrane protein complex (CC), and 
signaling receptor regulator activity (MF). Additionally, 
our KEGG analysis identified several signaling pathways 
involved in this treatment approach, including pathways 
in cancer, lipid and atherosclerosis, fluid shear stress and 
atherosclerosis, the PI3K-Akt pathway, and the MAPK 
signaling pathway (Fig. 7a, b).

Molecular docking
We employed network pharmacology and PPI analyses 
to determine the top three compounds, quercetin, beta-
sitosterol, and kaempferol, for docking with the top three 
proteins, AKT1, IL6, and IL1B. The best docking image of 
the receptor-ligand complex is presented in Fig. 8.

Fig. 1 Venn diagram showing the overlapping target genes for 
HQGZWWD against DVT. HQGZWWD, Huang-Qi-Gui-Zhi-Wu-Wu 
Decoction; DVT, Deep vein thrombosis
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Our results indicate that beta-sitosterol can form 
hydrogen bonds with ALA-9 and GLY-101 through IL-1B 
protein (Fig.  8a), while quercetin can do so through 
GLU-25, TYR-24, ARG-91, and SER-30 (Fig.  8b), and 
kaempferol through SER-30, ARG-91, ASN-101, LEU-
134, and PRO-78 (Fig.  8c). Similarly, for AKT1, beta-
sitosterol formed hydrogen bonds via LYS-130 (Fig.  8d) 
and quercetin via ASP-348 and ALA-390 (Fig. 8e), while 
kaempferol formed hydrogen bonds via ARG-169/170 
and ASP-103 (Fig. 8f ). Finally, for the IL6 protein: beta-
sitosterol forms hydrogen bonds via TRP-112 (Fig.  8g); 
quercetin does so through GLN-41/40, ASP-87, and LYS-
170 (Fig.  8h), while kaempferol forms bonds between 
PHE-101/TR-P-49 and ALA-99 (Fig. 8i).

The tighter the binding between the ligands and recep-
tors, the smaller the binding energy. Notably, binding 
energy < -5  kcal/mol indicates good affinity and binding 
activity between the receptor and ligand [35, 36]. Our 
molecular docking results showed that all three selected 
compounds (quercetin, beta-sitosterol, and kaempferol) 
had high affinities for the three core targets (AKT1, 

IL6, and IL1B), as their binding energies to proteins 
were < -5 kcal/mol (Table 1); this suggests that these com-
pounds may play crucial roles in the treatment of DVT.

Discussion
This study investigated the mechanism by which HQG-
ZWWD treats DVT. By constructing and analyzing 
databases and network diagrams of traditional Chinese 
medicine prescriptions, we identified quercetin, beta-
sitosterol, and kaempferol as highly correlated with 
DVT. Previous studies demonstrated that quercetin and 
its derivatives possess anticoagulant, antiplatelet, and 
antifibrinolytic activities [37, 38], effectively prevent-
ing pulmonary thromboembolism [39]. Furthermore, 
onion extracts rich in quercetin regulate MAPK under 
coagulation stimulation to prolong thrombosis time 
[40], consistent with our KEGG enrichment analysis 
results. Kaempferol and quercetin are flavonoids that 
inhibit prothrombin activity while regulating fibrino-
gen-thrombin interactions for antithrombotic formation 
in  vivo and in  vitro [41]. In 2018, researchers reported 

Fig. 2 Herb-disease-gene-target network of HQGZWWD against DVT. The larger the font size, the more important its role in the compound. 
HQGZWWD Huang-Qi-Gui-Zhi-Wu-Wu Decoction, DVT Deep vein thrombosis, HM Hedysarum multijugum Maxim, CR Cinnamomi Ramulus, 
PA Paeoniae Radix Alba, ZR Zingiber officinale Roscoe, JF Jujubae Fructus. (C1)kaempferol, common components of HM and PA, (C2)quercetin, 
common components of HM and JF, (C3)beta-sitosterol, common components of CR, PA, ZR, and JF, (C4)sitosterol, common components of CR 
and PA, (C5)mairin, common components of HM, PA, and JF, (C6)( +)-catechin, common components of CR, PA, and JF, (C7)stigmasterol, common 
components of ZR and JF
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that plant-derived beta-sitosterol exhibits antithrom-
botic properties, such as in vivo anticoagulant effects and 
thromboprophylaxis [42]. These findings suggest that 
these components play an essential role in the treatment 
of DVT using HQGZWWD. However, research on the 
mechanisms of action of beta-sitosterol and kaempferol 
in thrombosis is still at an early stage and warrants fur-
ther exploration.

The results of the PPI network analysis suggested that 
AKT1, IL6, and IL1B could be potential core targets for 
treating DVT with HQGZWWD; IL-1B and IL-6 are 
proinflammatory cytokines with a wide range of biologi-
cal activities [43]. Initially, it was believed that IL6 did 

not play a role in venous thrombosis; however, as more 
research was conducted on its function, this statement 
was discarded [44]. Studies have revealed that patients 
with DVT have elevated levels of IL-6, and in  vivo and 
in vitro studies have confirmed its involvement in DVT 
formation [45, 46]. Similar to psoriasis, studies have 
shown that IL-6 is involved in regulating inflammation-
related thrombosis [47]. Regarding IL-1B, research has 
indicated increased body levels during acute pulmonary 
embolism, which can be reversed by atorvastatin treat-
ment [48]. Currently, most studies on cytokines focus on 
their effects on atherosclerosis and cardiovascular disease 
[49–51]; however, research on their direct involvement 

Fig. 3 PPI network. Empty nodes represent proteins of unknown 3D structures; filled nodes represent some 3D structures that are known or 
predicted. Edges represent protein–protein associations: the light blue edges represent from curated databases; the fuchsia edges represent 
experimentally determined; the green edges represent gene neighborhood; the red edges represent gene fusions; the dark blue edges represent 
gene co-occurrence; the light green edges represent text mining; the black edges represent co-expression; the light purple edges represent protein 
homology
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in venous thrombosis started late. Further exploration is 
needed to determine the specific mechanism underlying 
these findings, which were significant in our study.

We conducted GO and KEGG analyses to investigate 
the mechanism of action of HQGZWWD in DVT. The 
results of the GO analysis showed that HQGZWWD 
treatment primarily involved responses to inorganic tol-
erance, positive regulation of phosphorylation, plasma 
membrane protein complex, and signaling receiver regu-
lator activity. KEGG analysis revealed that multiple sign-
aling pathways are involved in HQGZWWD treatment of 
DVT, including pathways in cancer, lipid and atheroscle-
rosis, fluid shear stress, atherosclerosis, PI3K-Akt, and 
MAPK signaling pathways. The involvement of querce-
tin in cancer pathogenesis may be the main reason for its 
enrichment in cancer [52–54]. A previous study showed 
that the lack of protein tyrosine phosphatase non-recep-
tor type 22 (PTPN22) significantly accelerates thrombus 
formation. Further research has shown that in platelets 
with PTPN22 defects, the phosphorylation of phosphodi-
esterase 5A (PDE5A) increases, and the cyclic guanosine 
monophosphate levels and vasodilator-stimulated phos-
phoprotein phosphorylation decrease [55]. Other studies 
have demonstrated that the platelet phenotypic response 
caused by Glycoprotein VI (GPVI) activation is linked to 
changes in protein kinase substrate phosphorylation. To 
investigate how adenosine diphosphate (ADP) secretion 
and thromboxane generation feedback affect GPVI acti-
vation and signal transduction, proteomic analysis was 
conducted; the results revealed significant alterations 
in the phosphorylation levels following ADP secretion, 
thromboxane feedback, and collagen-related peptide 
(CRP-XL) stimulation. The significantly altered proteins 

were primarily involved in biological processes such as 
vesicle-mediated transport and cell skeleton reconstruc-
tion, which cannot be separated from the role of quality 
model protein complexes and signal regulation receptor 
activity [56]. These identified biological processes, cel-
lular components, and molecular functions aligned with 
our GO analysis results: response to inorganic tolerance, 
positive regulation of phosphorylation, plasma mem-
brane protein complex, and signaling receiver regula-
tor activity; therefore, it is worth investigating whether 
HQGZWWD exerts antagonistic effects on DVT forma-
tion via these biological processes. Our confidence was 
enhanced by the preliminary prediction results of the 
network pharmacology.

Although atherosclerosis and venous thrombosis were 
once considered distinct pathological conditions, recent 
studies have challenged this notion [57]. A study pub-
lished in the NEJM suggested that atherosclerosis may 
contribute to the development of venous thrombosis 
[58]. Furthermore, Hong et  al. discovered that patients 
with idiopathic DVT had significantly higher rates of 
coronary artery calcification than controls [59]. Another 
study reported that patients with acute DVT had a high 
incidence of acute myocardial infarction or ischemic 
stroke-related death during long-term follow-up [60]. 
These findings suggest a potential synergistic relation-
ship between atherosclerosis and venous thrombosis. 
For instance, some studies have demonstrated that ath-
erosclerosis can affect the adhesion of thrombotic sub-
stances to the peripheral venous system [61]. Specifically, 
atherosclerosis primarily affects the arterial tree system 
and is caused by an imbalance in lipid metabolism and 
maladaptive immune responses, resulting in chronic 

Fig. 4 Central gene cluster identified in the PPI network of HQGZWWD-DVT based on MCODE analysis. a–c Was cluster 1, 2, and 3, respectively
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inflammation of the blood vessel walls [62–64]. Further-
more, chronic inflammatory diseases that cause changes 
in blood vessel walls are associated with a higher risk 
of DVT [65, 66]. Shared risk factors such as inflamma-
tion, hypercoagulability, and endothelial injury increase 
the likelihood of chronic inflammation induced by pro-
cesses related to atherosclerosis, affecting the develop-
ment of DVT and adhesion of DVT clots within veins 
[67, 68]. Traditional Chinese medicine treatment meth-
ods have shown that HQGZWWD is effective against 
coronary heart disease caused by arteriosclerosis, cer-
ebral infarction, and peripheral vascular disease [69, 70]. 
Furthermore, literature search has revealed quercetin, a 
compound in HQGZWWD, can combat the progression 
of arteriosclerotic plaques through multiple mechanisms, 
such as regulating oxidized low-density lipoprotein-
induced endothelial cell senescence [71] and modulating 

the autophagy of macrophages [72]. Since HQGZWWD 
has a positive therapeutic effect on arteriosclerosis, 
which is known to have a mutually promoting effect on 
DVT, it may be worthwhile to investigate whether HQG-
ZWWD can simultaneously inhibit the progression of 
both conditions; this aligns with one of the objectives 
of network pharmacology, drug repositioning, and drug 
development.

The PI3K/Akt signaling pathway is a crucial regulatory 
pathway playing a significant role in pathophysiological 
processes such as cell growth, differentiation, and pro-
liferation [73]. Recently, researchers have focused on its 
correlation with endothelial cell mobilization [74], dif-
ferentiation [75, 76], and apoptosis [77]. Studies have 
suggested that this pathway regulates vascular endothe-
lial growth factor (VEGF) secretion and controls apop-
tosis in blood vessels and vascular endothelial cells [78]. 

Fig. 5 PPI network diagram processed by Cytascape. The color of the target point changes gradually according to the degree value. The higher the 
degree value, the larger the circle. As the degree value changes, the color changes from light purple to deep purple



Page 9 of 15Fan et al. Journal of Orthopaedic Surgery and Research          (2023) 18:475  

Fig. 6 GO analysis of key target genes. The top 5 items of biological function are listed on the vertical axis, including GOMF, GOCC, and GOBP, the 
horizontal axis in the figure represents the gene ratio. GO Gene ontology, BP biological process, CC cell composition

Fig. 7 a KEGG analysis of key target genes, b Network of top 20 pathways. Red diamond represents gene, and green triangle represents pathway. 
The size of the nodes represents the value of the degree. The horizontal axis in the figure represents the gene ratio. KEGG Kyoto Encyclopedia of 
Gene and Genome
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Additionally, microRNA-126 has been found to inhibit 
the PI3K/Akt signaling pathway to prevent vascular 
endothelial cell apoptosis for therapeutic effects in DVT 
treatment [79]. Furthermore, FXII activates PI3K/AKT 
signaling and promotes DVT progression by inducing 
inflammatory reactions [80]. However, kaempferol, the 

main component identified in this study, significantly 
reduced the phosphorylation of PI3K/AKT during the 
collagen/adrenaline-stimulated platelet activation tests. 
This delay ultimately resulted in a 34.6% reduction in 
clotting time. Additionally, animal experiments dem-
onstrated the thromboprotective effect of resveratrol 

Fig. 8 Molecular docking results of main chemical components of HQGZWWD and core proteins in PPI network a IL1B-beta-sitosterol, 
b IL1B-quercetin, c IL1B-kaempferol, d AKT1-beta-sitosterol, e AKT1-quercetin, f AKT1-kaempferol, g IL6-beta-sitosterol, h IL6-quercetin, i 
IL6-kaempferol
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in collagen/adrenaline- and thrombin-induced acute 
thrombotic embolism models and FeCl3-induced carotid 
artery thrombosis models [41]. The target we selected 
was enriched in the PI3K/Akt signaling pathway, and 
kaempferol was one of the main components screened, 
which validated the presence of AKT1 in the PPI network 
analysis and suggested promising directions for future 
research. HQGZWWD can potentially inhibit endothe-
lial cell apoptosis by activating the PI3K/Akt pathway, 
which could potentially slow the progression of DVT. 
Kaempferol, the primary constituent of HQGZWWD, 
may play a crucial role in this mechanism; however, addi-
tional cellular and animal experiments are necessary to 
further investigate this mechanism.

The MAPK signaling pathway is a crucial component 
of the eukaryotic signal transduction network; it plays a 
key role in regulating cell proliferation, differentiation, 
apoptosis, and stress responses under normal and patho-
logical conditions [81, 82]. Studies have demonstrated 
that a sustained increase in reactive oxygen species can 
activate inflammatory reactions by activating MAPK 
signaling pathways. This activation leads to apoptosis of 
vascular endothelial cells and induces thrombosis [83]. 
Furthermore, studies have shown that ginsenoside-Rp3 
can regulate MAPK signaling pathways to inhibit plate-
let activation and thrombosis [84]. These findings sup-
port our hypothesis that HQGZWWD may delay DVT 
progression by modulating the MAPK signaling path-
way. Previous research has indicated that the activation 

of Raf1 in the MAPK pathway can regulate thrombox-
ane production and platelet thrombosis [85]. However, 
quercetin, the primary compound in HQGZWWD, 
has been shown to inhibit IL-1 and chemokine produc-
tion via the MAPK signaling pathway [86]. IL-1-induced 
inflammatory factors can activate proinflammatory 
thrombogenic processes in vascular endothelial cells, 
stimulate angiogenic mediator production, and promote 
thrombosis [87, 88]. Therefore, investigating whether 
HQGZWWD and its main components inhibit thrombus 
formation by regulating these processes is essential; the 
findings of this study reveal its potential.

Molecular docking experiments revealed that querce-
tin, beta sitosterol, and kaempferol, the main compounds 
obtained from HQGZWWD, have binding energies with 
core target proteins AKT1, TP53, and TNF of < -5  kcal/
mol (Table 1). This indicated that these three small mole-
cule compounds may bind to these proteins and regulate 
signal transduction; they play vital roles in the treatment 
of DVT. However, the therapeutic effects and molecular 
mechanisms of these agents active in DVT require fur-
ther investigation; we believe they possess significant 
potential for the clinical prevention and treatment of 
DVT.

This study had some limitations. Although we used 
modern bioinformatics methods to explore the role of 
HQGZWWD in treating DVT through network phar-
macology and molecular docking, there is still a lack of 
molecular dynamics(MD) simulations to supplement 

Table 1 Binding energy of molecular docking

Target Target (PDB ID) Target structure Compound Binding 
energy (kcal/
mol)

IL1B 7Z4T Beta-sitosterol (Fig. 8a) − 8.0

Quercetin (Fig. 8b) − 8.1

Kaempferol (Fig. 8c) − 8.2

AKT1 7FCV Beta-sitosterol (Fig. 8d) − 9.7

Quercetin (Fig. 8e) − 7.8

Kaempferol (Fig. 8f ) − 8.3

IL6 7PHS Beta-sitosterol (Fig. 8g) − 8.7

Quercetin (Fig. 8h) − 7.8

Kaempferol (Fig. 8i) − 7.5
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molecular docking in determining the dynamic stability 
of receptor ligands [89, 90]. Additionally, this study relied 
solely on conventional computational analysis without 
utilizing more comprehensive omics datasets for mining 
targets. Although quercetin, sitosterol, and kaempferol 
have been identified as the three most important bioac-
tive components for treating DVT, they do not represent 
all the compounds in HQGZWWD. Therefore, further 
research involving MD simulations, deeper omics data 
mining, and molecular biology experiments are neces-
sary to validate our findings.

Conclusions
In summary, we adopted a new approach that combined 
network pharmacology and molecular docking to pre-
dict AKT1, IL1B, and IL6 as the most likely targets of 
HQGZWWD for treating DVT. Quercetin, kaempferol, 
and beta-sitosterol are the main active components of 
HQGZWWD; they may inhibit platelet activation and 
endothelial cell apoptosis by regulating the PI3K/Akt 
and MAPK signaling pathways, slowing the progression 
of DVT. Additionally, our results offer new insights into 
the pathogenesis of DVT and suggest potential avenues 
for developing innovative treatment strategies. The initial 
findings from network pharmacology have increased our 
confidence. However, further clinical experiments and 
in-depth basic research are necessary to fully understand 
the therapeutic effects and molecular mechanisms of tra-
ditional Chinese medicine on DVT; this will be the next 
area of our research.
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