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Abstract 

Background  Many techniques for atlantoaxial fixation have been developed. However, the biomechanical differ-
ences among various atlantoaxial fixation methods remain unclear. This study aimed to evaluate the biomechanical 
influence of anterior and posterior atlantoaxial fixation techniques on fixed and nonfixed segments.

Methods  An occiput-C7 cervical finite element model was used to construct 6 surgical models including a Harms 
plate, a transoral atlantoaxial reduction plate (TARP), an anterior transarticular screw (ATS), a Magerl screw, a posterior 
screw-plate, and a screw-rod system. Range of motion (ROM), facet joint force (FJF), disc stress, screw stress, and bone-
screw interface stress were calculated.

Results  The C1/2 ROMs were relatively small in the ATS and Magerl screw models under all loading directions except 
for extension (0.1°–1.0°). The posterior screw-plate system and screw-rod system generated greater stresses on the 
screws (77.6–1018.1 MPa) and bone-screw interfaces (58.3–499.0 MPa). The Harms plate and TARP models had rela-
tively small ROMs (3.2°–17.6°), disc stress (1.3–7.6 MPa), and FJF (3.3–106.8 N) at the nonfixed segments. Changes in 
disc stress and FJF of the cervical segments were not consistent with changes in ROM.

Conclusions  ATS and Magerl screws may provide good atlantoaxial stability. The posterior screw-rod system and 
screw-plate system may have higher risks of screw loosening and breakage. The Harms plate and TARP model may 
more effectively relieve nonfixed segment degeneration than other techniques. The C0/1 or C2/3 segment may not 
be more susceptible to degeneration than other nonfixed segments after C1/2 fixation.

Keywords  Atlantoaxial fixation, Nonfixed segment degeneration, Segmental stability, Stress concentration, Finite 
element

Background
The atlantoaxial complex is the most mobile segment 
of the spine, and its range of motion (ROM) in rotation 
accounts for approximately 50% of the entire cervical 
spine rotation [1]. Atlantoaxial instability or dislocation 
caused by trauma, tumours, infection, and congenital 
malformation may lead to profound neurologic defi-
cits and even death [2]. The goal of surgery should be to 
achieve reduction, decompression, fixation, and fusion of 
the atlantoaxial articular. The current approaches used 
to treat atlantoaxial instability are anterior and poste-
rior atlantoaxial fixation techniques, such as transoral 
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atlantoaxial plate fixation (Harms plate), transoral atlan-
toaxial reduction plate (TARP), anterior transarticu-
lar screw (ATS), posterior transarticular screw (Magerl 
screw), posterior screw-plate system, and posterior 
screw-rod system [3–5].

Currently, studies have demonstrated that posterior 
surgery represented by C1 lateral mass-C2 pedicle screw 
fixation achieves reliable stability and has high fusion 
rates and excellent clinical outcomes, so it has become 
the commonly used method for atlantoaxial fixation [6–
8]. However, the posterior approach may present unsat-
isfactory decompression and reduction results in some 
cases in addition to the risk of vertebral artery injury and 
causing more extensive soft tissue damage than the ante-
rior approach [9, 10]. In particular, the anterior approach 
is suitable for patients with a vertebral artery with an 
abnormal course and patients with no posterior bony 
structure [11]. To date, many in vitro and finite element 
studies have investigated the biomechanical differences 
in atlantoaxial ROM and implant stress between various 
posterior fixation techniques [12–14]. Conversely, ante-
rior fixation techniques have been less studied to date, 
and concerns are often raised about the biomechani-
cal behaviour of the atlantoaxial joint. In addition, these 
studies showed heterogeneity due to anatomical differ-
ences, operative procedures, and loading conditions. 
Thus, these results should be cautiously interpreted.

In addition, it is well known that nonfixed segment 
degeneration, especially adjacent segment degenera-
tion, is one of the most common long-term complica-
tions of cervical arthrodesis, which can provoke typical 
neck pain [15, 16]. Numerous studies have demonstrated 
that segment degeneration is closely related to abnormal 
increases in ROM, disc stress, and facet joint force (FJF) 
at nonfixed segments [17–19]. However, the influence 
of different atlantoaxial fixation techniques on nonfixed 
segments remains unclear. Notably, previous finite ele-
ment studies simulating atlantoaxial fixation only consid-
ered the reconstruction of the upper cervical spine rather 
than the whole cervical spine [20–22]. It is necessary 
to establish finite element models of the whole cervical 
spine to better understand how the ROM, disc stress, and 
FJF change with respect to different fixation techniques 
and loading conditions for cervical segments. This may 
be beneficial for understanding the occurrence of seg-
ment degeneration after atlantoaxial fixation.

Finite element analysis based on numerical models is 
widely used in biomechanical research since it allows us 
to easily investigate joint mobility and stress distribution. 
To evaluate the biomechanical influence of various atlan-
toaxial fixation techniques on fixed and nonfixed seg-
ments, an occiput (C0)–C7 cervical finite element model 
was constructed, and six surgical models were developed 

(the Harms plate, TARP, ATS, Magerl screw, screw-plate 
system, and screw-rod system). The ROM, FJF, and maxi-
mum stresses on the screws, bone-screw interfaces, and 
intervertebral discs were calculated and analysed.

Methods
Modelling of the intact cervical spine
In this study, a finite element model of the C0–C7 cer-
vical spine was constructed. Informed consent for the 
use of individual data was obtained from the partici-
pant. First, the cervical computed tomography scans 
(1.0  mm thickness) of a healthy male (30  years of age; 
height, 176 cm; weight, 60 kg) without any cervical spine 
deformity or related diseases were imported into Mim-
ics 21.0 software (Materialise, Leuven, Belgium). Then, 
the rough geometric model of the cervical vertebrae was 
generated by executing a series of software commands, 
such as threshold segmentation and regional growth. For 
further correction, surface tuning and optimization with 
3-Matic 11.0 (Materialize, Leuven, Belgium) was used to 
build a geometric solid model of the bone, cartilage, and 
intervertebral discs. Next, HyperMesh 2019 (Altair Engi-
neering, Inc., Troy, Michigan, USA) was used to mesh the 
model and construct the major ligaments. Finally, model 
assembly, material property definitions, and finite ele-
ment analysis were performed using Abaqus 6.13 (Das-
sault System, Paris, France).

The intact model consisted of the occiput, 7 cervical 
vertebrae, 5 intervertebral discs, and ligaments (Fig.  1). 
The thicknesses of the cortical bone and cartilage end-
plates were 1 mm and 0.5 mm, respectively. The interver-
tebral disc was composed of the nucleus pulposus, 
annulus fibres, and annulus ground substance. The fibres 
were embedded in the annulus ground substance with an 
inclination of ± 30°–45°.

The spinal ligaments included the tectorial membrane, 
transverse ligament, apical ligament, alar ligament, ante-
rior atlantooccipital membrane, anterior atlantoaxial 
ligament, posterior atlantooccipital membrane, poste-
rior atlantoaxial ligament, anterior longitudinal ligament, 
posterior longitudinal ligament, ligamentum flavum, 
interspinous ligament, and capsular ligament. The tecto-
rial membrane and transverse ligament were modelled 
using 4-node membrane elements. All other ligaments 
were represented with nonlinear tension-only spring ele-
ments (Fig. 2).

Hyperelastic materials were applied to the cartilage, 
nucleus pulposus, and annulus ground substance. The 
annulus fibres were defined as hypoelastic material prop-
erties. Frictionless soft contact was applied to simulate all 
the contact interactions, including the facet joints, atlan-
tooccipital joint, atlantoaxial joint, and odontoid joint. 
The cortical bone and cancellous bone were simulated 
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as isotropic elastic materials. The occiput was simulated 
as a rigid body. A convergence analysis was performed to 
ensure that the maximum changes in the strain energy 
were < 5%. The element types and material properties 
referred to previous studies, as shown in Table 1 [23].

Modelling of the surgical procedures
Six surgical models were developed based on the intact 
model to simulate anterior and posterior atlantoaxial 
fixation. Anterior fixation techniques were performed 

using the Harms plate, TARP, and ATS. Specifically, 
the anterior arch of C1, the odontoid process, and the 
ligaments associated with them were removed to allow 
placement of the TARP and Harms plate. A butter-
fly shaped TARP with a thickness of 2  mm was fixed 
with bilateral anterior C1 lateral mass screws and C2 
vertebral body screws (Fig.  3A). A Harms plate was 
fixed with two atlantal screws and three axial screws 
(Fig.  3B). For ATS fixation, the anterior transarticu-
lar screws were advanced into the C2 body from the 
undersurface of the overhanging lip of the lateral mass 

Fig. 1  The intact finite element model of the cervical spine. A Front view. B Lateral view. C Intervertebral disc

Fig. 2  Ligament load‒displacement curve in the finite element 
model. (AAOM, anterior atlantooccipital membrane; AAAL, anterior 
atlantoaxial ligament; PAAL, posterior atlantoaxial ligament; PAOM, 
posterior atlantooccipital membrane; AlL, alar ligament; ApL, 
apical ligament; ALL, anterior longitudinal ligament; PLL, posterior 
longitudinal ligament; ISL, interspinous ligament; LF, ligamentum 
flavum; CL, capsular ligament)

Table 1  Material properties and element types in the finite 
element models

Materials Element type Young’s 
modulus 
(MPa)

Poisson’s 
ratio (μ)

Cortical bone C3D4 12,000 0.3

Cancellous bone C3D4 450 0.2

Joint cartilage C3D8I 10 0.3

Cartilage endplate C3D8I 24 0.4

Nucleus pulposus C3D8H 1 0.49

Annulus ground C3D8H 4.2 0.45

Annulus fibre T3D2 450 0.3

Tectorial membrane 4-node mem-
brane elements

20 0.3

Transverse ligament 20 0.3

Implants C3D4 110,000 0.3
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of C2 and 5  mm lateral to the base of the odontoid 
process, passed through the midpoint of the atlanto-
axial joint and entered the C1 lateral mass (Fig.  3C). 
Posterior fixation techniques included the Magerl 
screw, screw-plate system, and screw-rod system. In 
the Magerl technique, two transarticular screws were 
inserted from the C2 inferior articular process, passed 
across the atlantoaxial lateral joints and directed 
towards the C1 anterior arch (Fig. 3D). For the poste-
rior screw-rod system, four independent screws were 
inserted into the bilateral C1 lateral mass and the C2 
pedicle, and the ipsilateral C1 and C2 screws were con-
nected by a rod (Fig.  3E). The screw position of the 
posterior screw-plate system was the same as that of 
the screw-rod system, and the ipsilateral C1 and C2 
screws were connected by a plate (Fig. 3F).

The surgical models were performed as reported 
previously in the literature [24–29]. The diameter of 
the screws and rods was 3.5  mm. The lengths of the 
C1 lateral mass screws, C2 pedicle screws, C2 verte-
bral body screws, anterior transarticula screws, and 
posterior transarticula screws were 30  mm, 30  mm, 
10  mm, 20  mm, and 40  mm, respectively. All implant 
components were designed as titanium alloys. The 
bone–screw, screw-plate, and screw–rod interfaces 
were defined as a tied contact condition.

Loading and boundary conditions
The lower surface of the C7 vertebra was constrained 
in all directions. To validate the intact model, a pure 
moment of 1.5 Nm was applied on the superior surface 
of the C0 to produce flexion, extension, lateral bending, 
and axial rotation. The C0–C7 ROMs and load‒deflec-
tion curves were compared with previously reported 
data. Then, a 1.5 Nm moment and 73.6 N follower load 
were applied to the intact model to determine the C0–
C7 ROMs. The 73.6 N follower load was used along the 
physiological curvature of the cervical spine to simulate 
the head weight and muscle force [18]. Displacement 
control was performed for the surgical models to ensure 
that their C0–C7 ROMs were the same as those of the 
intact model. The ROM, FJF, screw stress, bone-screw 
interface stress, and disc stress of different models were 
analysed. The FJF was recorded from both the left and 
right facets and averaged for each level during extension. 
For axial rotation and lateral bending, only the forces 
from the loaded facets were used.

Results
Model validation
Under flexion–extension, lateral bending, and axial rota-
tion, the ROM of each segment was compared with the 
previous finite element study by Zhang et al. in 2006 and 
in vitro experimental study by Panjabi et al. in 2001 [30, 

Fig. 3  The surgical models for atlantoaxial fixation. A Transoral atlantoaxial reduction plate. B Harms plate. C Anterior transarticular screw. D Magerl 
screw. E Screw-rod system. F Screw-plate system
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31]. The ROMs of the current and previous studies were 
consistent (Fig.  4). The load‒deflection curves showed 
that the ROM increased nonlinearly with increasing 
moment, which was also in accordance with the existing 
results of studies by Herron et al. [32]. Therefore, the cur-
rent model was considered reliable and could be used for 
further studies.

The fixed segment
In general, the C1/2 ROMs of all the surgical models 
(0.1°–2.5°) were significantly lower than that of the intact 
model (7.2°–19.4°) under all loading conditions (Fig. 5A). 
In the ATS, Magerl screw, Harms plate, TARP, screw-
plate, and screw-rod models, the C1/2 ROM was 1.0°, 
0.9°, 1.6°, 2.0°, 2.5°, and 2.5° under flexion, respectively; 
1.0°, 0.9°, 1.4°, 1.7°, 0.1°, and 0.1° under extension, respec-
tively; 0.2°, 0.1°, 0.6°, 0.6°, 0.4°, and 0.4° under lateral 
bending, respectively; and 0.5°, 0.9°, 1.8°, 2.1°, 1.8°, and 
1.8° under axial rotation, respectively. For each surgical 
model, the maximum stress of the screws was induced 
during axial rotation. In the ATS, Magerl screw, Harms 
plate, TARP, screw-plate, and screw-rod models, the 
maximum stresses of the screws were 81.7–311.1  MPa, 
68.0–210.1  MPa, 145.9–324.5  MPa, 133.0–429.2  MPa, 

77.6–515.5  MPa, and 94.1–1018.1  MPa, respectively 
(Fig.  5B); the maximum stresses of the bone-screw 
interfaces were 65.3–217.7  MPa, 103.3–269.1  MPa, 
59.8–191.4 MPa, 64.5–176.7 MPa, 62.0–499.0 MPa, and 
58.3–433.0 MPa, respectively (Fig. 5C).

The nonfixed segments
For all the surgical models, the ROMs of the nonfixed 
segments (3.2°–17.6°) were higher than those obtained 
for the intact model (2.4°–12.9°), especially during axial 
rotation (Fig. 6). In the ATS, Magerl screw, Harms plate, 
TARP, screw-plate, and screw-rod models, the ROMs 
at the nonfixed segments were 3.4°–14.3°, 3.4°–14.3°, 
3.2°–17.6°, 3.3°–17.5°, 3.4°–14.1°, and 3.4°–14.1°, respec-
tively. The differences in the ROMs of each segment 
were very small among the six surgical models during 
flexion, lateral bending, and axial rotation. Under exten-
sion, the Harms plate and TARP models had relatively 
larger ROMs at the C0/1 segment (17.5°–17.6°) and lower 
ROMs at the C3–C7 segments (3.9°–6.9°).

Compared with the intact model (1.0–2.2  MPa), all 
the implants increased the maximum disc stresses at 
nonfixed levels during all motions (1.2–8.9 MPa), espe-
cially during axial rotation (Fig. 7). In the ATS, Magerl 

Fig. 4  Validation of the intact model. Intersegmental range of motion under a pure moment of 1.5 Nm: A flexion–extension, B lateral bending, and 
C axial rotation. D Load‒deflection curves
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screw, Harms plate, TARP, screw-plate, and screw-rod 
models, the maximum disc stresses were 1.3–8.9 MPa, 
1.3–8.9 MPa, 1.3–7.6 MPa, 1.3–7.5 MPa, 1.3–8.2 MPa, 
and 1.2–8.1 MPa, respectively. The disc stresses in flex-
ion and lateral bending were similar across all surgical 
models, whereas relatively smaller disc stresses in the 
Harms plate and TARP models were noted in extension 
and axial rotation.

FJF was not detected in each segment of the intact or 
surgical models during flexion except for the C0/1 seg-
ment. Compared with the intact model (16.4–55.9 N), 
the FJF at each level in all surgical models (34.6–127.4 
N) increased substantially during axial rotation (Fig. 8). 
In the ATS, Magerl screw, Harms plate, TARP, screw-
plate, and screw-rod models, the FJF was 10.1–126.4 
N, 9.9–127.4, 3.4–106.8 N, 3.3–105.2 N, 7.2–118.0 N, 
and 7.3–117.1 N, respectively. The FJF for the Harms 
plate and TARP was the smallest among the six surgical 
models during all motions and was smaller than that for 
the intact model during extension and lateral bending.

Changes in ROM, disc stress, and FJF with intervertebral 
levels
The results of the ROM, disc stress, and FJF were nor-
malized with respect to the intact model (Fig. 9). At the 
C0/1, C1/2, C2/3, C3/4, C4/5, C5/6, and C6/7 levels, the 
ROMs were 109.1–166.1%, 0.7–22.7%, 116.0–183.3%, 
133.5–218.2%, 126.7–200.4%, 123.4–192.1%, and 125.0–
196.5%, respectively. At the C2/3, C3/4, C4/5, C5/6, and 
C6/7 levels, the disc stresses were 140.2–522.0%, 137.9–
352.6%, 115.3–310.0%, 121.1–442.9%, and 102.3–195.0%, 
respectively. At the C0/1, C2/3, C3/4, C4/5, C5/6, and 
C6/7 levels, the FJF was 46.0–393.9%, 37.1–281.9%, 73.3–
227.9%, 70.4–263.1%, 64.8–253.5%, and 60.5–260.2%, 
respectively.

Discussion
Due to the deep anatomical position and frequent vari-
ation of the vertebral artery, atlantoaxial fixation is 
challenging, risky and was once avoided in spinal sur-
gery. Since sublaminar wires were first proposed for 

Fig. 5  The range of motion and maximum stress at the fixed segment. A Range of motion. B Screw stress. C Bone-screw interface stress
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atlantoaxial fixation by Gallie et  al. in 1939, research-
ers have continuously improved posterior fixation tech-
niques by using Magerl transarticular screws, C1 lateral 
mass screws, C2 pedicle screws, and C2 translaminar 
screws to meet the needs of individual patients. In addi-
tion, anterior atlantoaxial fixation with the Harms plate, 
ATS, and TARP that was developed in the 1980s has 
improved surgical strategies. Despite this, when plan-
ning atlantoaxial fixation, particularly anterior fixation, 
decisions must be made carefully to avoid problems with 
internal fixation stability, including screw breakage or 
loosening, and nonfixed segment degeneration. To this 
end, six typical anterior and posterior surgical models 
were constructed in this study to comprehensively eval-
uate the biomechanical differences between different 
models.

One of the primary objectives of surgery is to achieve 
rigid fixation of the atlantoaxial articulation, and ROM is 
the most important index for evaluation of segmental sta-
bility. In this study, all surgical models significantly lim-
ited the ROMs of the C1/2 segment in all directions when 

compared with the intact model. Interestingly, there are 
only slight differences among surgical models. In particu-
lar, there was almost no difference between the ATS and 
Magerl screws, between the Harms plate and TARP, and 
between the posterior screw-rod system and screw-plate 
system. This may be because their design concepts based 
on biomechanical mechanisms were similar. Moreover, 
studies have shown that the C1/2 segment is responsible 
for 63%-73% of the rotational movement of the cervical 
spine, while only 12% contributes to flexion–extension, 
so limiting atlantoaxial rotation is essential [33]. Here, it 
was found that the ROM of the C1/2 segment was rela-
tively small in the ATS and Magerl screw models during 
all motions except extension. One reason may be due to 
the position of the transarticular screw near the centre 
of rotation of the C1/2 segment. From this point of view, 
the transarticular screw that is used in anterior or pos-
terior approaches showed superior performance, which 
was also consistent with results from Erbulut et al. [12]. 
Previous cadaveric studies found that Magerl screws 
provided excellent stability for lateral bending and axial 

Fig. 6  The range of motion at the nonfixed segments. A C0/1 segment. B C2/3 segment. C C3/4 segment. D C4/5 segment. E C5/6 segment. F 
C6/7 segment
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rotation and that wiring achieved a three-point fixation, 
thereby achieving the highest stability [34]. A recent 
study by Thomas et al. indicated that Magerl screw fixa-
tion without a supplementary posterior construct would 
provide sufficient stability and achieve satisfactory clini-
cal outcomes in patients with atlantoaxial instability 
caused by rheumatoid arthritis [35]. However, a finite 
element analysis conducted by Chun et  al. showed that 
the Magerl screw was less effective for stabilization than 
the C1 lateral mass-C2 pedicle screw [6]. The heteroge-
neity in modelling methods and loading conditions could 
explain the difference in the study results. Although the 
fusion rate of Magerl screws is 100%, thereby indicating 
good stability, approximately 22% of patients are unsuit-
able for Magerl screw placement due to some anatomical 
factors [36]. Given the relatively small risks of vertebral 
artery and spinal cord injuries during screw placement, 
ATS may be a viable option when Magerl screws are not 
feasible.

When evaluating structural stability, not only the 
ROM of the segment but also the stress concentration 
effect of the implants should be considered because of 
extensive cyclic loading imposed on the highly mobile 

upper cervical region. Under sustained mechanical load-
ing, instrumentation failure due to screw loosening or 
breakage is likely to occur, which seriously affects the 
long-term stability of surgical segments. Our study inves-
tigated the maximum von Mises stresses of the screws 
and bone-screw interfaces in each surgical model. The 
findings revealed that the posterior screw-rod system 
and the screw-plate system generated greater stresses 
on screws and bone-screw interfaces during all move-
ments except for extension, suggesting that they may 
have higher risks of screw loosening and breakage. We 
speculated that this may be attributed to the load dis-
tribution of the cervical spine, with 36% in the anterior 
column and 64% in the posterior columns [37]. Kim 
et  al. reported that the rate of screw fracture was 7.4% 
(2/27) for screw-rod constructs and 7.1% (1/14) for C1-2 
transarticular screws [38]. For TARP fixation, no screw 
breakage has been reported thus far, and only a few cases 
of screw loosening have been reported in the literature. 
Nevertheless, the reliability of these clinical studies was 
affected by sample size, follow-up time, age, bone mineral 
density, screw position, and other factors. Thus, addi-
tional research is required in the future. It is worth noting 

Fig. 7  The disc stress at the nonfixed segments. A C2/3 segment. B C3/4 segment. C C4/5 segment. D C5/6 segment. E C6/7 segment
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that Harms plates are more likely to incur screw loos-
ening in clinical practice due to the absence of a screw-
locking mechanism [26]. However, the contact modes of 
all screw-plate and bone-screw interfaces were simplified 
in our study; therefore, it is not surprising that the maxi-
mum stresses of screws and bone-screw interfaces in the 
Harms plate model were similar to those in the TARP 
model.

Until now, the origin of nonfixed segment degenera-
tion has remained controversial. However, overwhelm-
ing evidence suggests that it is associated with abnormal 
alterations in mechanical loading and a compensatory 
increase in ROM. Consistently, it was noticed that the 
ROMs and disc stresses of nonfixed segments increased 
in surgical models under all loading directions compared 
to the intact model. After atlantoaxial fixation, the FJF 
of each nonfixed segment mainly increased during rota-
tion. Among the six surgical models, a relatively small 
ROM, disc stress, and FJF were observed in the models 
with Harms plate and TARP, indicating that they may 
delay the progression of degeneration. Harms plates are 

seldom used in clinical applications because they are 
prone to screw loosening and other adverse events. Yin 
et al. developed the TARP system in 2002, which allowed 
operators to perform decompression, reduction, internal 
fixation, and fusion through the single transoral approach 
in a one-stage operation without an additional poste-
rior procedure [39]. To date, this technology has been 
improved to the fourth generation, and clinical studies 
have shown a favourable outcome for patients who were 
treated with TARP. Finally, we sought to understand how 
the ROM, disc stress, and FJF changed with cervical 
levels. Interestingly, we found that the changing trends 
of disc stress and FJF were not consistent with those of 
ROM. Moreover, the ROM compensation did not dem-
onstrate a smooth decreasing trend with the increase in 
the distance from the surgical segment. Thus, the C0/1 
or C2/3 segment may not be more susceptible to degen-
eration than other nonfixed segments after C1/2 fixation. 
This is possibly related to the anatomical characteris-
tics of intervertebral discs and facet joints of the cervi-
cal spine. In short, the effects of different atlantoaxial 

Fig. 8  The facet joint force at the nonfixed segments. A C0/1 segment. B C2/3 segment. C C3/4 segment. D C4/5 segment. E C5/6 segment. F C6/7 
segment
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fixation techniques on nonfixed segment degeneration 
need to be further confirmed.

This study has some limitations. First, the screws, liga-
ments, and loading conditions were simplified, and the 
impacts from surrounding muscles were ignored in the 
model. Thus, a gap may exist between the finite element 
model and a real spine system, and the results need to be 
further evaluated and verified by more high-quality stud-
ies in the future. Second, six classic techniques of atlan-
toaxial fixation were simulated in this study, and more 
investigations are required to explore the other tech-
niques. Finally, finite element models were constructed 
based on the CT data of a healthy male subject. The effect 
of anatomic structure, osteoporosis, and other factors on 
biomechanical properties was overlooked.

Conclusion
In this study, the ATS and Magerl screws may provide 
good atlantoaxial stability under all loading directions 
except for extension. Compared to the other fixation 
techniques, the posterior screw-rod system and screw-
plate system generated greater stresses on screws and 

bone-screw interfaces, suggesting that they may have 
higher risks of screw loosening and breakage. The 
Harms plate and TARP resulted in a relatively small 
ROM, disc stress, and FJF at the nonfixed segments, 
which indicated that they may delay the progression of 
segment degeneration. The C0/1 or C2/3 segment may 
not be more susceptible to degeneration than other 
nonfixed segments after C1/2 fixation.
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