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Abstract 

Background Ankylosing spondylitis (AS) is a chronic progressive autoimmune disease characterized by spinal and 
sacroiliac arthritis, but its pathogenesis and genetic basis are largely unclear.

Methods We randomly selected three serum samples each from an AS and a normal control (NC) group for high-
throughput sequencing followed by using edgeR to find differentially expressed genes (DEGs). Gene Ontology (GO), 
Kyoto Encyclopedia of Genes and Genomes, Reactome pathway analyses, and Gene Set Enrichment Analysis were 
used to comprehensively analyze the possible functions and pathways involved with these DEGs. Protein–protein 
interaction (PPI) networks were constructed using the STRING database and Cytoscape. The modules and hub genes 
of these DEGs were identified using MCODE and CytoHubba plugins. Reverse transcription-quantitative polymerase 
chain reaction (RT-qPCR) was used to validate the expression levels of candidate genes in serum samples from AS 
patients and healthy controls.

Results We successfully identified 100 significant DEGs in serum. When we compared them with the NC group, 49 
of these genes were upregulated in AS patients and 51 were downregulated. GO function and pathway enrichment 
analysis indicated that these DEGs were mainly enriched in several signaling pathways associated with endoplasmic 
reticulum stress, including protein processing in the endoplasmic reticulum, unfolded protein response, and ubiqui-
tin-mediated proteolysis. We also constructed a PPI network and identified the highly connected top 10 hub genes. 
The expression levels of the candidate hub genes PPARG , MDM2, DNA2, STUB1, UBTF, and SLC25A37 were then vali-
dated by RT-qPCR analysis. Finally, receiver operating characteristic curve analysis suggested that PPARG  and MDM2 
may be the potential biomarkers of AS.

Conclusions These findings may help to further elucidate the pathogenesis of AS and provide valuable potential 
gene biomarkers or targets for the diagnosis and treatment of AS.
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Introduction
Ankylosing spondylitis (AS) is a chronic inflammatory 
arthritis and autoimmune disease with an incidence of 
0.1–1.4% [1]. This disease is primarily characterized by 
spinal and sacroiliac arthritis [2] and is frequently asso-
ciated with extra-articular features including anterior 
uveitis, psoriasis, or inflammatory bowel disease [3–5]. 
The stiffness of the affected joints becomes severe with 
the development of ankylosing spondylitis, leading 
to back pain, poor quality of life, and in more serious 
cases, mental illness [6, 7]. Currently, the etiology of AS 
is multifactorial; both environmental and genetic pre-
dispositions have been suggested to be involved in AS 
pathogenesis [8], including macrophage activation sta-
tus, infections with particular bacteria, inflammatory 
cytokines, and autophagy [9–12]. Nevertheless, few 
genes have been shown to be associated with the dis-
ease and the actual cause of AS has remained unclear. 
Therefore, there is an urgent need to identify new bio-
markers that can act as reliable diagnostic or prognostic 
indicators of AS. Such biomarkers will be invaluable in 
the prevention, treatment, and control of this disease.

In recent decades, ribonucleic acid (RNA) sequenc-
ing has proven to be a novel high-throughput sequenc-
ing method that uses deep-sequencing technology 
[13]. This approach can be used to identify abnormally 
spliced genes, detect allele-specific expression, and 
identify differentially expressed genes (DEGs). Bioin-
formatics analysis can use sequencing data to analyze 
the genome, transcriptome, and proteome information 
of organisms and has  been used to reveal the mecha-
nisms of disease that occurs due to abnormal biological 
processes at the molecular level [14, 15]. To date, mul-
tiple studies have used microarray expression and RNA 
sequencing to identify DEGs involved in the pathogen-
esis of AS [16, 17]. Peripheral blood is often considered 
a potential resource for the discovery of disease bio-
markers [18]. However, the levels of DEGs in peripheral 
serum from patients with AS have not been explored, 
nor have these molecular mechanisms been further 
validated. Altered gene expression profiles that differ-
entiate disease from healthy can be used as a basis for 
understanding the pathogenesis of AS.

In the current study, by expression profiling of high-
throughput sequencing and experimental analysis, we 
identified DEGs in the serum of AS patients and nor-
mal controls. Then, a molecular mechanism of AS was 
proposed after analyzing these pathways and functional 
enrichments. Finally, with the use of these DEGs, we 
established the protein–protein interaction (PPI) net-
work to identify hub genes for targeting AS.

Materials and methods
Patients and samples
A total of 18 patients with AS patients and 18 healthy 
age-matched controls were selected from the Affili-
ated Hospital of Qingdao University (Qingdao, China) 
between December 2020 and September 2021. All 
patients met the modified New York 1984 criteria 
[19] and were initially diagnosed with AS, drug-naive 
patients with short disease durations. None of the 
patients or controls had any previous history of car-
diovascular disease, diabetes, hepatitis, malignancy, or 
other autoimmune and inflammatory illnesses.

Serum samples were collected using standard phle-
botomy procedures and centrifuged at 3000  g for 
10  min. The separated sera were stored in RNase-free 
centrifuge tubes at 80 °C until further processing. This 
research was approved and reviewed by the Medical 
Ethics Review Committee of the Affiliated Hospital of 
Qingdao University (approval number: QYFY WZLL 
27251). All participants provided written informed 
consent in accordance with policies of the hospital eth-
ics committee.

RNA extraction and sequencing
We randomly selected three patients with AS and three 
normal control (NC) for high-throughput sequencing 
[20]. Total RNA was extracted from serum using TRI-
zol reagent (Invitrogen; Thermo Fisher Scientific, Inc., 
Waltham, MA, USA) according to the manufacturer’s 
instructions. Subsequently, the concentration and 
integrity of the isolated RNA were determined using 
the Qubit 3.0 Fluorometer (Invitrogen, Carlsbad, CA, 
USA) and an Agilent 2100 Bioanalyzer (Applied Bio-
systems, Carlsbad, CA, USA), respectively. RNA-seq 
libraries were prepared using the SMARTer Stranded 
Total RNA-Seq kit v.2 (Takara Bio USA, Mountain 
View, CA, USA) as previously [21]. The RNA samples 
were fragmented and reversely transcribed into first-
strand cDNA, followed by second-strand synthesis. 
After cDNA synthesis, a tailing and adapter ligation 
was performed, and then the cDNA was amplified by 
PCR. Subsequently, the cDNA library quality and con-
centration were evaluated using the Agilent 2100 Bio-
analyzer (Applied Biosystems, Carlsbad, CA, USA). The 
qPCR-based KAPA Biosystems Library Quantification 
kit (Kapa Biosystems, Inc.) was used for the quantifi-
cation of the cDNA library. Ribosomal RNA depletion 
was performed during library construction according 
to the manufacturer’s protocol. Sequencing was car-
ried out in a 150-bp paired-end run (PE150) using the 
NovaSeq 6000 system (Illumina, San Diego, CA, USA).
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Analysis of DEGs
Reads were first mapped to the latest UCSC transcript 
set using Bowtie2 version 2.1.0 [22] and gene expres-
sion levels were estimated using RSEM v1.2.15 [23]. The 
trimmed mean of M-values was used to standardize gene 
expression. DEGs were then identified using edgeR soft-
ware [24]. Genes showing altered expression with p < 0.05 
and more than 1.5-fold changes were considered to be 
differentially expressed.

Gene ontology (GO), kyoto encyclopedia of genes 
and genomes (KEGG), and reactome analyses
To better understand the function and pathways of DEGs 
in AS, we performed GO functional annotation, KEGG 
enrichment [25], and Reactome analyses using the R 
package clusterProfiler [26]. GO analysis was used to 
investigate biological functions based on differentially 
expressed coding genes. This analysis classifies functions 
according to the three following aspects: biological pro-
cess (BP), cellular component (CC), and molecular func-
tion (MF). A lower p-value indicated a higher significance 
of a GO term (p-value < 0.05). The KEGG and Reactome 
enrichment analyses were used to predict the related 
pathways of each DEG. A p-value of < 0.05 reflected sig-
nificant enrichment.

Gene set enrichment analysis (GSEA)
GSEA was done as described in Subramanian et al. [27]. 
We used the R package fgsea to analyze the expression 
of filtered genes against MSigDB, a well-known molecu-
lar feature database. In addition, only two typical gene 
sets from MSigDB, H (hallmark gene sets) and C2:: CP 
(curated gene sets, canonical pathways), were analyzed 
by GSEA here. Finally, we retained results with statistical 
significance p-values < 0.05.

Construction of a protein–protein interaction (PPI) network 
and identification of hub genes and key modules
To gain insights into the correlation among DEGs at 
the protein level, the Search Tool for the Retrieval of 

Interacting Genes (STRING, https:// strin gdb. org) data-
base was used to construct a PPI network of these DEGs 
[28]. The minimum required interaction score used to 
construct this PPI network was 0.4, and the isolated 
nodes were abandoned. Cytoscape [29] was used to vis-
ualize this PPI network and we used the plug-in Cyto-
hubba to explore the hub genes of this PPI network [30]. 
Based on the centrality score, the key nodes in this PPI 
network were determined, and then the hub genes were 
deduced. Simultaneously, we used the molecular com-
plex detection (MCODE) plugin for clustering analysis of 
gene networks to select the key subnetwork modules.

Validation of DEGs
Reverse transcription-quantitative polymerase chain 
reaction (qRT-PCR) experiments were conducted to 
validate the DEGs identified using high-throughput 
sequencing. cDNA was synthesized using the Prime 
Script RT reagent kit with genomic DNA eraser (TaKaRa, 
Tokyo, Japan), and qRT–PCR was performed on a Light-
Cycler 480 (Roche, Indianapolis, IN, USA) using SYBR 

Table 1 Primers used in the present study

Gene Forward primer Reverse primer

PPARG GCC CTT CAC TAC TGT TGA CTT CTC C CAG GCT CCA CTT TGA TTG CAC TTT G

MDM2 AGG CAG GGG AGA GTG ATA CAG ATT C CAG GAA GCC AAT TCT CAC GAA GGG 

DNA2 GAA ACC CAG CAT CTG AAG CAA ACA C TCT CCA TTT CCG AAG CAG GCA TTA G

STUB1 TCC TAC CTC TCC AGG CTC ATTGC ATG TCC GCC ATG TAC TTG TCGTG 

UBTF ATC TCC CAG AGC CAG AAG GAG GGG AGA CAG GCT CTT AAC CCA 

SLC25A37 CCT TCT ACC GGA GCT ACA CCA CCT GAG ATG ATG TGG GAC TGC 

GAPDH GCA CCG TCA AGG CTG AGA AC TGG TGA AGA CGC CAG TGG A

Table 2 Characteristics of AS patients and NC

CRP, C-reactive protein; ESR, erythrocyte sedimentation rate; HLA-B27, human 
leukocyte antigen-B27; BASDAI, Bath Ankylosing Spondylitis Disease Activity 
Index; BASFI, Bath Ankylosing Spondylitis Functional Index; VAS, Visual Analogue 
Scale

Items NC (n = 18) AS (n = 18)

Age (years) 31.6 ± 7.2 32.1 ± 7.7

Gender, No. (%)

 Female 3 (16.7) 2 (11.1)

 Male 15 (83.3) 16 (88.9)

CRP (mg/L) – 15.4 ± 8.7

ESR (mm/H) – 32.2 ± 18.9

HLA-B27 positive, No. (%)

 No – 1 (6.6)

 Yes – 17 (94.4)

BASDAI – 4.1 ± 1.3

BASFI – 3.7 ± 1.2

VAS – 5.8 ± 1.8

https://stringdb.org
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Green Master Mix (TaKaRa, Tokyo, Japan). The primer 
sequences are listed in Table  1. Validation experiments 
were performed using serum from 15 AS samples and 
15 NC samples. mRNA levels of the selected new target 
genes were quantified by the  2−ΔΔCt method after nor-
malization to the housekeeping gene GAPDH.

Receiver operating characteristic (ROC) analyses
To assess the diagnostic value of DEGs in AS, we per-
formed ROC analyses using the pROC R package. We 

calculated the area under the curve (AUC) under the 
binomial exact confidence interval and Ggplot2 was 
applied for further visualization.

Statistical analysis
Statistical analysis was performed using SPSS 26.0 
software (SPSS Inc., Chicago, IL, USA). All data are 
expressed as the mean ± SD. Statistical significance was 
determined by Student’s t test, and P values < 0.05 were 
considered to indicate a statistically significant difference.

Fig. 1 A scatter plot and B volcano plot. The red dots represent upregulated DEGs, and the green dots represent downregulated DEGs. C 
Hierarchical clustering of differentially expressed genes between the AS and control groups
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Results
Characteristics of AS and NC patients
Table 2 presents the demographic and clinical character-
istics of the 18 patients with AS and 18 NC in the present 
study. Patients with AS and NC were matched in terms of 
age and sex.

Identification of DEGs in AS
In the AS Peripheral Blood Serum samples, a total of 100 
DEGs were differentially expressed, including 49 upregu-
lated DEGs and 51 downregulated DEGs, respectively. 
These DEGs are represented by scatter and volcano plots 
in Fig. 1A and B, respectively. Figure 1C shows the hier-
archical clustering of these DEGs. The ten most upregu-
lated and downregulated DEGs are shown in Table 3.

GO and pathway enrichment analyses
GO function enrichment analysis was conducted on 100 
DEGs using the R package clusterProfiler, and 167 GO 
items with significant differences were identified, includ-
ing 130 BP items, 16 CC items, and 21 MF items. It can 
be seen from the graph that the biological processes of 
BP mediated by DEGs were mainly concentrated in 
response to toxic substance, response to the antibiotic, 
and ER unfolded protein response. The results for CC 
were mainly concentrated in cytoplasmic vesicle lumen, 

vesicle lumen, and mitochondrial matrix. The results for 
MF showed that fatty acid binding, DNA helicase activity, 
and histone acetyltransferase activity were significantly 
enriched items (Fig. 2A).

KEGG pathway enrichment analysis of these DEGs 
yielded numerous signaling pathways that were signifi-
cantly altered in the serum of AS. A total of six KEGG 
pathways were enriched for these DEGs (Fig.  2B), and 
protein processing in the endoplasmic reticulum (ER) 
was the most significantly enriched KEGG pathway asso-
ciated with AS. For validating the biofunctions related to 
such DEGs, Reactome is another well-known signaling 
pathway database. We also identified six pathways based 
on Reactome analysis in the present study (Fig. 2C). The 
most enriched Reactome terms of AS were neutrophil 
degranulation and unfolded protein response (UPR).

GSEA‑enriched pathways
Simultaneously, we utilized GSEA to identify the poten-
tial mechanism underlying AS. We analyzed 100 top 
genes and identified 17 pathways that were enriched 
significantly. Among the pathways with the highest 
enrichment scores were the nr1h2 and nr1h3 mediated 
signaling pathways and the hnf3b pathway. We visual-
ized the top ten pathways (≤ 10) with the most significant 
activation and inhibition by GSEA (Fig. 2D).

PPI network analysis
A total of 55 proteins and 58 edges were obtained with 
a cutoff value of credibility > 0.4, as shown in Fig.  3A. 
Isolated nodes from the PPI network were abandoned. 
The hub genes were selected from the PPI network 
of AS-related genes using the cytoHubba plugin. The 
results demonstrated that ten hub genes could be iden-
tified using the Maximal Clique Centrality (MCC) algo-
rithm, including PPARG , MDM2, DNA2, STUB1, UBTF, 
SLC25A37, TICRR , RBBP8, DDX11, and NME2, as 
shown in Fig.  3B. A summary of the degree values for 
the ten genes is provided in Table  4. Of these, PPARG  
(degree = 6) and MDM2 (degree = 6) were identified as 
the most significant genes. The key subnetwork modules 
were identified using the Cytoscape plug-in MCODE. 
According to the degree of importance, two significant 
modules were selected from this PPI network. The results 
revealed two modules as shown in Fig. 3C and D. Module 
1 was composed of seven nodes and nine edges (score: 
3.000), followed by module 2, which was composed of 
three nodes and three edges (score: 3.000).

Verification of DEGs by qRT‑PCR
To validate these major results, we selectively performed 
qRT-PCR analysis of six hub genes including PPARG 

Table 3 Top ten upregulated and ten downregulated DEGs in 
AS

Gene name logFC Fold change P value Regulation

SYNE3 13.70024767 13,310.22803 2.53347E−05 Up

NEK9 13.66669431 13,004.23858 2.90169E−05 Up

PPARG 13.62684124 12,649.92523 3.87972E−05 Up

HAT1 13.15463256 9118.827157 0.000323846 Up

STUB 13.0556646 8514.255069 0.000478438 Up

MCM3AP 12.78714097 7068.267708 0.000980806 Up

KIF20A 12.77003424 6984.950792 0.001209986 Up

FAHD1 12.64685533 6413.318437 0.001424853 Up

RBBP8 12.43477239 5536.553204 0.002137449 Up

MARC1 12.1303543 4483.327884 0.003358303 Up

MIF − 11.57772609 0.000327158 0.003321108 Down

ASCC3 − 11.5932764 0.00032365 0.003319781 Down

CCDC124 − 11.6024601 0.000321597 0.003347325 Down

PMS2 − 11.6352721 0.000314365 0.003485706 Down

NELFB − 11.82545438 0.000275539 0.002867456 Down

PAMR1 − 12.07196817 0.000232261 0.002207181 Down

VASN − 12.48849677 0.000174015 0.001089923 Down

SIK1 − 12.54756591 0.000167035 0.001085811 Down

OGDH − 12.71646833 0.00014858 0.000627557 Down

HBA1 − 13.92287772 6.43867E-05 3.65243E−06 Down
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, MDM2, DNA2, STUB1, UBTF, and SLC25A37 using 
RNA from 15 AS patients and 15 healthy controls. The 
relative gene expression levels of PPARG , MDM2, DNA2, 
and STUB1 were significantly higher in blood sam-
ples from AS patients when compared with those from 
healthy controls. Moreover, the expression levels of 
SLC25A37 were significantly lower in the AS group rela-
tive to the healthy control group (Fig. 4).

Receiver operating characteristics curve (ROC) analysis 
of confirmed DEGs in serum
To explore the possibility of these six genes as diagnostic 
biomarkers of AS patients, our qRT-PCR data were sub-
jected to ROC analysis to evaluate their diagnostic abil-
ity. As shown in Fig. 5, except UBTF, the areas under the 
ROCs of the other five genes were all > 0.7. This finding 
indicates that these genes may be sensitive biomarkers 
that can distinguish AS patients from individuals without 
AS.

Fig. 2 GO, KEGG, Reactome, and GSEA analyses of the differentially expressed genes in AS patient serum. A GO analysis. BP, CC, and MF are 
represented in red, blue, and green, respectively. B KEGG analysis. The six KEGG pathways are shown. C Reactome analysis. The six Reactome 
pathways. D GSEA enriched pathway. The top ten pathways (≤ 10) are shown
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Discussion
Recently, along with the continuous development of 
sequencing technologies and bioinformatics technology, 
studies on the molecular pathogenesis of diseases using 
bioinformatics tools have emerged in the field of bio-
medicine. Genome-wide genetic screens have identified 
a number of genes contributing to AS, but none has yet 
fully explained the disease process [31]. Previous stud-
ies have found that DEGs were abundantly expressed in 
synovial tissue, whole blood and peripheral blood mono-
nuclear cells in AS [32–34]. To date, there has been no 
research highlighting the expression profiles of DEGs in 
serum. Taking this into account, we sought to reveal the 
role of serum DEGs in the pathogenesis of AS. In the pre-
sent study, we adopted high-throughput sequencing to 
analyze DEG profiles in serum isolated from AS patients 
and controls. We successfully identified 100 DEGs and 
then performed a range of analyses (GO, KEGG pathway, 
GSEA, and PPI) in an attempt to uncover novel insights 
into DEG functions in AS.

In this work, through annotation and functional 
enrichment analysis, we revealed that numerous genes 
associated with unfolded protein response and immu-
noreaction and apoptosis may play a key role in AS, GO 
and pathway analysis of DEGs demonstrated that the 
DEGs were mainly enriched in protein processing in ER, 

response to endoplasmic reticulum stress (ERS), UPR, 
neutrophil activation involved in immune response and 
the intrinsic apoptotic signaling pathway. Studies have 
confirmed that misfolding of the human leucocyte anti-
gen B27 allele (HLA-B27) forms non-native heavy chain 
dimeric structures [35]. Dimers may accumulate in the 
ER, resulting in increased ER stress and potentially lead-
ing to the onset of pro-inflammatory responses [36]. In 
addition, misfolding proteins within the ER can induce 
the UPR, which is a cellular stress response that initi-
ates transcriptional changes whose function is to restore 
ER homeostasis [37]. Very recently it was shown that 
M1 macrophages produce a UPR and stimulated ER 
stress-related IL-23 in AS patients [38]. The UPR is also 
associated with aberrant distribution and function of 
plasmacytoid dendritic cells [39]. Taken together, the 
results of this study in association with other previous 
studies have indicated a basis for the vital role of ERS and 
UPR in the pathogenesis and progression of AS.

Thereafter, the STRING database was used to build a 
PPI network and Cytoscape was used to identify sig-
nificant module and hub genes [40]. Analysis of the PPI 
network constructed based on AS-related DEGs identi-
fied direct or indirect crosstalk between these genes. 
According to the MCC algorithm from the CytoHubba 
plugin in Cytoscape, the top ten AS-related genes were 

Fig. 2 continued
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identified, including PPARG , MDM2, DNA2, STUB1, 
UBTF, SLC25A37, TICRR, RBBP8, DDX11, and NME2. 
A high degree value indicated that these genes play a 
pivotal role and modulate the functions of this network. 
Furthermore, a total of three cluster modules from this 

PPI network were extracted by MCODE analysis. Modu-
larization contributed to analyzing the biological func-
tions of the intricate networks of our RNA-seq data in 
AS. Finally, to validate the results of our bioinformatics 
analyses, we used qRT-PCR to determine the expression 
of hub genes that were related to AS, including PPARG 
, MDM2, DNA2, STUB1, UBTF, and SLC25A37. The 
results of our qRT-PCR assays provided further verifica-
tion that our high-throughput sequencing results were 
reliable. Next, to assess the diagnostic utility of these hub 
genes, a ROC curve analysis was performed. The AUCs 
for five hub genes were more than 0.7, suggesting that 
these genes could effectively distinguish between samples 
from AS patients and normal controls. Thus, they should 
be novel and efficient serum indicators of AS in patients.

Several studies on these hub genes are related to the 
occurrence and development of autoimmune diseases. 
PPARG encodes a member of the peroxisome prolif-
erator-activated receptor (PPAR) subfamily of nuclear 
receptors. PPARs, especially PPARG, contribute to the 
inhibition of key pro-inflammatory genes such as NF-kB, 

Fig. 3 Protein–protein interaction (PPI) networks and modules. A PPI network of DEGs was analyzed using Cytoscape software. The size and color 
of the nodes corresponding to each gene were determined according to the degree of interaction. The size of the nodes reflects the degree value, 
where the larger the node, the greater the degree value. The closer to the blue node, the higher connectivity between two nodes. B PPI network for 
the top ten hub genes. C and D Graphic representation of top two significant modules of the PPI network. (C Module 1, D Module 2)

Table 4 The degree values of top ten hub genes

Gene Degree

PPARG 6

MDM2 6

DNA2 4

STUB1 3

UBTF 3

SLC25A37 3

TICRR 3

RBBP8 3

DDX11 3

NME2 2
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TNFα, TGFβ, and the interleukins IL-1a and IL-6 [41, 
42]. In a very recent study of CD14+ monocytes from 
systemic lupus erythematosus patients, it was reported 
that there was an emergence of an immunosuppres-
sive M2-phenotype upon TLR-induced epigenetic acti-
vation of PPARG expression [43]. Moreover, lipocalin 

2 modulated by PPARG could be a potential pathway 
involved in concurrent inflammation and ankylosis in 
inflammatory bowel diseases and ankylosing spondylitis 
[44]. MDM2 is a multi-functional protein that is involved 
in both the p53 and NF-κB signaling pathways [45]. DNA 
induction of MDM2 promotes proliferation of human 
renal mesangial cells and alters peripheral B cell subsets 
in pediatric systemic lupus erythematosus [46]. Another 
study found a potential association between the del1518 
variants in MDM2 and rheumatoid arthritis and indi-
cates that combinatorial genotypes and haplotypes in the 
MDM2 locus may be linked to rheumatoid arthritis [47]. 
These hub genes thus regulate immune-related diseases 
and have the potential to serve as diagnostic and thera-
peutic targets in these diseases.

Although potential DEGs in AS were identified based 
on bioinformatics, there were still some limitations to 
this study. First, the number of samples in this study was 
limited. Second, further in vitro and in vivo experiments 
to validate the DEGs and their potential mechanisms 
are lacking. Therefore, further research is warranted to 
address the possible limitations of this study in terms of 
biased results and conclusions.

Fig. 4 qRT-PCR-based validation of the expression of six differentially expressed genes in control and AS patient serum

Fig. 5 Visualization and details of the ROC curve
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Conclusion
Using high-throughput RNA sequencing, we analyzed 
the DEGs profile in NC and AS groups in serum tissue. 
Many of these DEGs were enriched in several signaling 
pathways associated with ERS, which can provide novel 
clues for understanding the mechanism driving AS. In 
addition, we found that PPARG and MDM2 can be used 
as novel potential molecular targets for the diagnosis and 
treatment of AS. In conclusion, our results may provide 
a theoretical basis for further studies to elucidate the 
molecular mechanism of AS and provide more therapeu-
tic targets for future clinical interventions.
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