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Abstract 

Purpose In this study, we proposed establishing an automatic computer‑assisted surgical planning approach based 
on average population models.

Methods We built the average population models from humerus datasets using the Advanced Normalization 
Toolkits (ANTs) and Shapeworks. Experiments include (1) evaluation of the average population models before surgical 
planning and (2) validation of the average population models in the context of predicting clinical landmarks on the 
humerus from the new dataset that was not involved in the process of building the average population model. The 
evaluation experiment consists of explained variation and distance model. The validation experiment calculated the 
root‑mean‑square error (RMSE) between the expert‑determined clinical ground truths and the landmarks transferred 
from the average population model to the new dataset. The evaluation results and validation results when using the 
templates built from ANTs were compared to when using the mean shape generated from Shapeworks.

Results The average population models predicted clinical locations on the new dataset with acceptable errors when 
compared to the ground truth determined by an expert. However, the templates built from ANTs present better accu‑
racy in landmark prediction when compared to the mean shape built from the Shapeworks.

Conclusion The average population model could be utilized to assist anatomical landmarks checking automatically 
and following surgical decisions for new patients who are not involved in the dataset used to generate the average 
population model.

Keywords Template, Statistical shape model, Computer‑assisted surgical planning, Clinical decision support

Introduction
Computer-assisted surgical planning is a preoperative 
procedure that consists of significant tasks like surgi-
cal target identification, surgical access planning, surgi-
cal tools and implant positioning, and assessment of the 
selected plan [1]. It supports surgeons effectively in 

making clinical decisions and improving outcomes in 
many kinds of surgery like orthopedic surgery [2], cranio-
maxillofacial surgery [3, 4], neurosurgery [5–7]. Particu-
larly, there was previous work using computer-assisted 
surgical planning for reverse shoulder replacement [8] 
and spine [9]. Moreover, researching interpatient vari-
ability for surgical planning is essential because the 
dramatical difference between individuals in the inher-
ent and morphometrics (or shape analysis) of anatomi-
cal structure would affect the success of a surgery, for 
instance, in orthopedic implants [10–12], craniosynos-
tosis surgery [13], and head-and-neck cancer resection 
[14]. Therefore, studies based on anatomical shape have 
evolved into an indispensable part of surgical planning. 
In this study, we built average population models from 
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the right and left humerus bones of female and male 
cadavers to share an idea of how to exploit an anatomi-
cal population-based model for the computer-assisted 
surgical planning, and the aim of our study is to reveal 
the usability of the anatomical population-based model 
for exact surgical landmark checking and surgical deci-
sion making. Results of this paper could be considered as 
a positive approach for making decision of humerus sur-
gery scenarios.

Related work
Studies in anatomical shape analysis started more than 
100 years ago, and statistical shape modeling (SSM) has 
become a great change in morphometric techniques to 
visualize complex anatomical structures and their vari-
ability in the population at a precision level by using 
statistical power [15–17]. SSM provides two kinds of 
information about the population: (1) the mean shape—
an average shape over all involved shapes in the popula-
tion; (2) the variation parameter to represent how much 
the shape can differ between subjects in the population 
[18]. Quantitative results of SSM assign a normal ana-
tomical structure with a high probability, while assign a 
low probability for a pathological shape [19]; therefore, 
SSM has been applied widely to computer-assisted sur-
gical planning, including radiotherapy planning [20], 
orthopedic surgery [21], spring-assisted cranioplasty [22], 
and cervical adaptive radiotherapy [23]. In the field stud-
ies of SSM, a well-defined correspondence technique is a 
prerequisite for building a statistical model, and comput-
ing correspondences automatically is based on registra-
tion between involved shapes [18]. Based on the review 
of Oguz et al. about correspondence techniques [24] and 
the evaluation and validation of Goparaju et al. about 
statistical shape modeling tools [16, 25], we can classify 
approaches for defining correspondences into two cat-
egories: the groupwise method and pairwise method.

The groupwise method mostly evolved from the pio-
neer model of point distribution models (PDM) [26] 
which considered representing objects or images as a set 
of points, and using principal component analysis (PCA) 
to build the statistical model. Many studies have devel-
oped from the theory of PDM using open-source or SSM 
tools for analyzing general anatomies, for example, mini-
mum description length (MDL) [27], Statismo frame-
work [28], and Shapeworks [15]. The study of Davies et 
al. [27] establishes optimal correspondence automatically 
between sets of shapes by applying the principle of MDL, 
whereas Statismo [28] implements probabilistic PCA to 
interpret the modeled objects, and statistical models gen-
erated by Statismo are represented as a probability dis-
tribution. The Shapeworks [15] proposed Particle-based 
modeling (PBM) where point-to-point correspondences 

between involved shapes are represented as dynamic par-
ticles which freely move on the surface of the modeled 
shapes and the positions of the particles can be directly 
optimized. The highly significant contribution of the 
Shapeworks to correspondence optimization is the algo-
rithm of entropy minimization in shape space, and the 
effectiveness of the Shapeworks has been demonstrated 
in a range of medical and clinical applications including 
orthopedics, cardiology, hip joint FAI pathology, dysplas-
tic hip joint, scapular morphology in Hill–Sachs patients, 
atrial fibrillation, and so on [15, 25]. Even though the 
Shapeworks showed the effectiveness and potential abil-
ity for applying to clinical applications, the principle of 
the Shapeworks is still built on the idea that there are 
point correspondences between involved structures, and 
almost modeled objects using Shapeworks are bones 
with a relatively stable shape over the population. To deal 
with complex structures like cardiac and vessel systems, 
or deal with highly varying soft tissues like liver and sur-
faces segmented MR images, point-based approach is dif-
ficult to establish point correspondences and to generate 
a statistical model [18, 29, 30].

The pairwise method, on the other hand, establishes 
the correspondences by mapping each involved subject to 
a predefined atlas or template following the principle of 
surface-based pairwise or volume-based pairwise corre-
spondence [24]. The approach of surface-based pairwise 
requires a standard parameter space where each object 
is mapped to, and the correspondences are computed 
between the individual samples and the parameter space. 
Most of surface-based pairwise approaches used a sphere 
as the standard space; for instance, Kelemen et al. pro-
posed a spherical harmonics (SPHARM) [31], and then, 
Styner et al. developed a SPHARM-PDM framework for 
building statistical shape analysis of brain structure [32] 
or hippocampus in schizophrenia [33]. However, the 
evaluation of Goparaju et al. [25] pointed that SPHARM-
PDM displayed inferior results compared to Shapeworks 
in the evaluation and validation experiments for clini-
cal applications. Another approach of the surface-based 
pairwise is using a nonparametric representation of shape 
as current a mathematical object to characterize geo-
metrical data via vector field—and the correspondences 
are computed in the space of currents based on rigid 
registration. Nevertheless, the current-based approach 
mainly depends on some parameters which used to 
model the geometrical data, such as the spatial scale of 
the currents and the scale of deformation [29, 30]. On the 
other hand, the volume-based pairwise method is based 
on a principle of not existing explicit correspondences 
between the individuals, and researches for shape analy-
sis using the volume-based pairwise recently have shown 
positive results for the human brain [34, [35], cardiac 
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[30], heart [36], and even brain template of non-human 
macaque [37]. However, these studies focused on ana-
lyzing shape models of soft tissues which have dynamic 
shape, not stable shapes like bones. Between some stud-
ies which focused on the volume-based pairwise such as 
FNIRT [38] and DRAMMS [39], an open source named 
Advanced Normalization toolkit (ANT) showed preci-
sion results in building template with high accuracy in 
registration when compared to others open sources [40, 
41]. Processing for creating an ANTs template does not 
bias toward any individuals, and the template generated 
from ANTs represents an unbiased average of involved 
shapes in the population [34].

Contributions
In this study, we aimed to establish computer-assisted 
surgical planning method based on human population 
data set. For that, the ANTs were applied to build aver-
age population models from inter-humerus datasets that 
include males and females with full corresponding left 
and right bones. Based on the average population mod-
els, the automated computer-assisted surgical planning 
method could be established, the surgical planning was 
conducted on the average population model, and the 
planning data could be transferred to each individual 
data even the data are not involved the dataset which is 
used to build the average population model.

To support the main idea for the computer-assisted 
surgical planning method, evaluation and validation 
experiments were conducted to make surgical predic-
tions for new data sets that did not involve in the proce-
dure of building average population model. Mean shapes 
generated from Shapeworks were used as references to 
compare evaluation results and validation results to the 
ANTs templates.

Materials and methods
The framework for building average population model 
and applying it to the surgical planning is presented in 
Fig. 1. The steps in the framework consist of (1) preproc-
essing; (2) splitting data; (3) building the average popula-
tion model; (4) evaluating the average population model 
before using it in the surgical planning; and (5) validation 
for the surgical planning.

Preprocessing and splitting data
The preprocessing consists of collecting data and 
data alignment based on iterative closest point (ICP) 
registration.

The data used for evaluation and validation are poly-
data of humerus bones that were collected from a data-
base of the Korea Institute of Science and Technology 
Information (KISTI). The dataset of humerus includes 50 
female subjects and 43 male subjects with full left bones 
and right bones. We separate into four sub-datasets that 

Fig. 1 Framework for using the average population model in the surgical planning
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consist of female-left, female-right, male-left, and male-
right sub-dataset. The dataset is written on the file with 
STL file format.

In the data alignment stage, with each sub-dataset, we 
select the first humerus subject as an initial reference and 
perform the ICP registration between the reference and 
each of the remaining subjects in the sub-dataset. The 
alignment process is implemented using an extension 
that our group built on the 3D Slicer [42].

To form data for training and testing, we randomly 
select subjects with a ratio of 82% for training and 18% 
for testing without bias in each sub-dataset. The average 
population models are built using Shapeworks and ANTs 
on the training data. The testing data sets are used for 
validation in the context of surgical planning.

Building average population model
We use the Shapeworks to build the SSMs and apply the 
ANTs to generate the templates. Shapeworks provides 
a convenience all-in-one GUI-based interface called 
Shapeworks Studio to build SSM, which includes the 
groom module, optimizes module, and analyzes module, 
as shown in Fig.  1. The humerus dataset was preproc-
essed and registered as described in Sect. 2.1; therefore, 
we chose the option of skipping grooming in the groom 
module. The optimized module provides options to 
model correspondence dynamic particles between the 
individuals using entropy minimization [15]. After the 
optimization process is completed, a mean shape of poly-
data is extracted from the analyze module.

A template of ANTs is a population-average image that 
is unbiased with respect to both shape and appearance 
from individuals [34], and the process to build the tem-
plate is presented in Fig. 1. First, to adapt to ANTs’ data 
format, we convert original polydata in each sub-dataset 
into images using Visualization Toolkit (VTK) [43]. The 
subject image with the biggest volume is chosen as an ref-
erence coordinate to define the space for an initial tem-
plate, and each subject image is resampled with respect 
to the initial template. The intensity of the initial template 
is computed as voxel-wise average from training images. 
An iterative nonlinear registration process is applied to 
build the population-average template as follows:

• Each image is registered to the temporary template 
using affine and deformable symmetric normaliza-
tion (SyN) transformation [34, 44].

• The inverse transformations from the temporary 
template to each of the subject images are averaged 
to create a new transformation.

• The registered images are averaged to update the 
temporary template.

• New transformation is applied to the updated tem-
plate.

• The process is iterated, and it will be completed if the 
difference between updated templates is minimized. 
The empirical research shows that four iterations are 
sufficient for building an optimal template in ANTs.

Evaluation before surgical planning
Before using the average population models for sur-
gical planning, explained variations are calculated to 
evaluate how much variance of shape of individuals 
can be explained by the average population model. The 
explained variations of mean shape are extracted from 
the analyze module of the Shapeworks Studio. For the 
template of ANTs, the explained variations are calcu-
lated using a principal component analysis (PCA). First, a 
group of 11 anatomical landmark points which are widely 
used for clinical communication and as surgical land-
marks are determined on the template by an orthopedic 
surgeon, as represented in Fig. 2. Next, these landmarks 
from the template (fixed image) are transformed to each 
subject image (moving image) in the training data using 
deformable registration to generate the correspondence 
landmark point clouds. After applying PCA, the percent-
age of explained variation in each mode (principal com-
ponent) is computed using its eigenvalue divided by the 
sum of all the eigenvalues [36]. Note that the number of 
modes is equal to the number of individuals minus one 
[28].

Fig. 2 Eleven clinical landmarks are defined on the humerus
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To evaluate the shape of the average population model, 
distance models and distance histograms between the 
mean shapes and the ANTs templates are computed in 
3D Slicer. The ANTs template is reconstructed into a 
polydata using segmentation module of the 3D Slicer [42] 
before registered to the mean shape using ICP registra-
tion. Next, a Hausdorff algorithm from VTK is applied to 
compute the distance model.

Validation for surgical planning
The validation for the context of surgical planning is per-
formed as follows:

• Eleven landmarks are manually determined on the 
average population model and each subject in the 
testing data by an expert at those clinical positions 
where presented in Fig. 2. The landmark annotations 
of subjects in testing data work as subject-specific 
ground truth.

• Eleven landmarks on the average population model 
are transferred to the testing subject using affine and 
deformable B-spline SyN [45]. The transferred land-
marks work as subject-predicted landmarks.

• Calculate RMSE between the ground truth and the 
predicted landmarks.

• Apply paired t tests.

Results
The explained variation for each sub-dataset in cases of 
modeling by Shapeworks and ANTs is presented with 
graphs (Fig.  3). Figure  3 shows that in all cases of sub-
dataset, the first seven modes of the average population 
model can capture 99% the shape variation of the indi-
viduals. However, the templates generated by ANTs can 
capture the variance of shape across individual subjects 
with higher explained variation than the mean shapes of 
Shapeworks.

Fig. 3 The explained variation of the average population models in each sub‑dataset: a female‑left, b female‑right, c male‑left, d male‑right
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Figure 4 shows an evaluation of the shape of the aver-
age population models as distance comparisons between 
the template and the mean shape. A RGB color map 
was presented to encode the distance range from − 6 to 
6  mm, and a signed distance means that one model is 
inside the other.

First, we consider the distance model and the histo-
gram in the case of female subjects as shown in Fig. 4A, 
B. The distance models of female-left and female-right 
display primarily in green color, and the highest fre-
quency bins of the histogram represent distance values in 
a range from − 0.5 to 1 mm. These results show that there 
are no significant differences in shape between the ANTs 
template and the mean shape in two cases of female-left 
and female-right.

Second, in the case of male subjects, the highest fre-
quency bins of the histogram represent distance values in 
a range from − 2.5 to − 1 mm in case of male-left, and a 
range from − 2 to 0.5 mm in case of male-right. There are 
some small red regions on the head of the distance model 
of male-left and male-right but insufficient to affect the 
global shape of the ANTs template and the Shapeworks 
mean shape.

Figures 5 and 6 present the differences in clinical land-
mark’s position between the ground truth defined by 
the expert and the predictions generated by the aver-
age population models. When using ANTs template, the 
minimum average of RMSE is 2.83  mm and the maxi-
mum average of RMSE is 3.13 mm, while the minimum 
average and the maximum average of RMSE in case of 
the Shapeworks mean shape are 3.66 mm and 4.05 mm, 
respectively.

Discussion and conclusion
In clinical setting, surgical landmarking is crucial for sur-
gical planning. The precise landmark is utilized to meas-
ure the bone parameters including its length and width. 
To insert the implant properly, accurate landmarking is 
the first step for surgical planning. Moreover, proper 
specification of the landmark is essential for the develop-
ment of bone implants, such as bone plates or total joint 
arthroplasty. We built the average models for automated 
computer-assisted landmarking, aiming to improve sur-
gical planning. In this study, we evaluated the feasibility 
of using the ANTs template compared to the mean shape 
of the Shapework for surgical planning. The experi-
ments include evaluations of the shape of the average 
population model and validation of predicting surgical 
landmarks positions for new data using the average pop-
ulation model.

The shape of the average population model is a primary 
factor that needs to evaluate before making decisions for 
surgical planning. Results from Figs.  3 and 4 show that 
the ANTs template works as a good average population 
model for modeling the shape variation of individuals in 
the training dataset with higher explained variance when 
compared to the Shapeworks. The higher the explained 
variance of the average population model, the more the 
model can explain the variation of the shape of the indi-
viduals in the data.

Figures  5 and 6 present that the average population 
model built from the Shapeworks or ANTs could use to 
make predictions for clinical landmarks locations with 
acceptable errors for new humerus data that were not 
involved to the process of building the average population 

Fig. 4 Distance models and correspondence histograms of distance values for each sub‑dataset: A female‑left, B female‑right, C male‑left, D 
male‑right
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model. However, ANTs templates presented an improve-
ment in landmark prediction when compared to the 
mean shapes built from Shapeworks because using the 
ANTs template provides improved accuracy with approx-
imately 23%, 21%, 22%, and 20% in cases of female-left, 
female-right, male-left, and male-right, respectively. 

Despite the average models generated from small-size 
datasets, the ANTs templates showed highly efficient 
results when transferred the surgical landmarks closely 
to the ground truth. These precision results are explained 
by using SyN algorithm in ANTs. The SyN algorithm 
showed the most consistently high accuracy registration 

Fig. 5 Humerus landmarks differences in ground truth and prediction using average population models for female: A left (p value < 0.05), B right (p 
value < 0.05)
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across subjects in an evaluation of 14 nonlinear deforma-
tion algorithms [41].

In this study, we shared the idea that we could use the 
average population model to support surgical decisions 
automatically for new patients who are not involved in 
the dataset building the average population model. Our 

results could be considered for designing an automated 
computer-assisted surgical planning method using 
ANTs.

In the future, we plan to extend the dataset to build 
more robust average population models and conduct 
the experiments applying the average population model 

Fig. 6 Humerus landmark differences in ground truth and prediction using average population models for male: A left (p value < 0.05), B right (p 
value < 0.05)
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to real surgical planning with the humerus or other 
anatomical structures.

Abbreviations
ANTs  Advanced Normalization Toolkits
RMSE  Root‑mean‑square error
SSM  Statistical shape modeling
PDM  Point distribution models
PCA  Principal component analysis
MDL  Minimum description length
PBM  Particle‑based modeling
SPHARM  Spherical harmonics
ICP  Iterative closest point
KISTI  Korea Institute of Science and Technology Information
VTK  Visualization Toolkit
SyN  Symmetric normalization
PCA  Principal component analysis

Acknowledgements
We would like to thank sincerely for the supporting of Korea Institute of Sci‑
ence and Technology Information.

Author contributions
(I) Sungmin Kim contributed to conception and design; (II) Hyun‑Joo Lee pro‑
vided the data; (III) Hyun‑Joo Lee supported clinical experiment and clinical 
opinions; (IV) Hang Phuong Nguyen conducted the experiments and analyzed 
results and interpretation; (V) Hang Phuong Nguyen and Sungmin Kim 
were involved in manuscript writing; and (VI) all authors contributed to final 
approval of manuscript. All authors read and approved the final manuscript.

Funding
This study was supported by the Korea Medical Device Development Fund, 
Grant Number 1711174276, RS‑2020‑KD000016.

Availability of data and materials
The data that have been used are confidential.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 24 March 2023   Accepted: 21 May 2023

References
 1. Zhou SK, Rueckert D, Fichtinger G. Handbook of medical image com‑

puting and computer assisted intervention. Amsterdam: Elsevier; 2020.
 2. Atesok K, Galos D, Jazrawi LM, Egol KA. Preoperative planning in ortho‑

paedic surgery: current practice and evolving applications. Bull NYU 
Hosp Jt Dis. 2015;73(4):257–257.

 3. Steinbacher DM. Three‑dimensional analysis and surgical planning in 
craniomaxillofacial surgery. J Oral Maxillofac Surg. 2015;73(12):S40–56.

 4. Nilsson J, Nysjö F, Nyström I, Kämpe J, Thor A. Evaluation of in‑house, 
haptic assisted surgical planning for virtual reduction of complex 
mandibular fractures. Int J CARS. 2021;16(6):1059–68.

 5. Wadley J, Dorward N, Kitchen N, Thomas D. Pre‑operative planning and 
intra‑operative guidance in mordern neurosurgery: a review of 300 cases. 
Ann R Coll Surg Engl. 1999;9.

 6. Algethami H, Lam F, Rojas R, Kasper E. Pre‑surgical and surgical planning 
in neurosurgical oncology—a case‑based approach to maximal safe 
surgical resection in neurosurgery. Front Clin Neurosurg. 2021. https:// 
doi. org/ 10. 5772/ intec hopen. 99155.

 7. Jannin P, Morandi X. Surgical models for computer‑assisted neurosurgery. 
Neuroimage. 2007;37(3):783–91.

 8. Rodríguez JA, Entezari V, Iannotti JP, Ricchetti ET. Pre‑operative planning 
for reverse shoulder replacement: the surgical benefits and their clinical 
translation. Ann Joint. 2019;4:4–4.

 9. Lee J, Kim S, Kim YS, Chung WK. Optimal surgical planning guidance for 
lumbar spinal fusion considering operational safety and vertebra‑screw 
interface strength: Optimal surgical planning guidance for lumbar spinal 
fusion. Int J Med Robotics Comput Assist Surg. 2012;8(3):261–72.

 10. Kobayashi S, Saito N, Horiuchi H, Iorio R, Takaoka K. Poor bone quality or 
hip structure as risk factors affecting survival of total‑hip arthroplasty. The 
Lancet. 2000;355(9214):1499–504.

 11. Wong AS, New AMR, Isaacs G, Taylor M. Effect of bone material properties 
on the initial stability of a cementless hip stem: a finite element study. 
Proc Inst Mech Eng H. 2005;219(4):265–75.

 12. Bryan R, Nair PB, Taylor M. Use of a statistical model of the whole femur in 
a large scale, multi‑model study of femoral neck fracture risk. J Biomech. 
2009;42(13):2171–6.

 13. Goobie SM, Meier PM, Sethna NF, et al. Population pharmacokinetics 
of tranexamic acid in paediatric patients undergoing craniosynostosis 
surgery. Clin Pharmacokinet. 2013;52(4):267–76.

 14. Craciunescu OI, Yoo DS, Cleland E, et al. Dynamic contrast‑enhanced MRI 
in head‑and‑neck cancer: the impact of region of interest selection on 
the intra‑ and interpatient variability of pharmacokinetic parameters. Int J 
Radiation Oncol Biol Phys. 2012;82(3):e345–50.

 15. Cates J, Elhabian S, Whitaker R. Shapeworks: particle‑based shape 
correspondence and visualization software. In: Statistical shape and 
deformation analysis. Elsevier. 2017; p. 257–298. doi: https:// doi. org/ 10. 
1016/ B978‑0‑ 12‑ 810493‑ 4. 00012‑2

 16. Goparaju A, Csecs I, Morris A, et al. On the evaluation and validation of 
off‑the‑shelf statistical shape modeling tools: a clinical application. Shape 
Med Imaging. 2018;11167:14–27.

 17. Ambellan F, Lamecker H, von Tycowicz C, Zachow S. Statistical shape 
models: understanding and mastering variation in anatomy. Adv Exp 
Med Biol. 2019;1156:67–84. https:// doi. org/ 10. 1007/ 978‑3‑ 030‑ 19385‑0_5.

 18. Heimann T, Meinzer H‑P. Statistical shape models for 3D medical image 
segmentation: a review. Med Image Anal. 2009;13(4):543–63.

 19. Albrecht T, Lüthi M, Gerig T, Vetter T. Posterior shape models. Med Image 
Anal. 2013;17(8):959–73.

 20. Pekar V, McNutt TR, Kaus MR. Automated model‑based organ delineation 
for radiotherapy planning in prostatic region. Int J Radiat Oncol Biol Phys. 
2004;60(3):973–80.

 21. Zheng G, Gollmer S, Schumann S, Dong X, Feilkas T, González Ballester 
MA. A 2D/3D correspondence building method for reconstruction of a 
patient‑specific 3D bone surface model using point distribution models 
and calibrated X‑ray images. Med Image Anal. 2009;13(6):883–99.

 22. Rodriguez‑Florez N, Bruse JL, Borghi A, et al. Statistical shape model‑
ling to aid surgical planning: associations between surgical parameters 
and head shapes following spring‑assisted cranioplasty. Int J CARS. 
2017;12(10):1739–49.

 23. Rigaud B, Simon A, Gobeli M, et al. Statistical shape model to generate a 
planning library for cervical adaptive radiotherapy. IEEE Trans Med Imag‑
ing. 2019;38(2):406–16.

 24. Oguz I, Cates J, Datar M, et al. Entropy‑based particle correspondence for 
shape populations. Int J CARS. 2016;11(7):1221–32.

 25. Goparaju A, Bone A, Hu N, et al. Benchmarking off‑the‑shelf statistical 
shape modeling tools in clinical applications. Med Image Anal. 2022. 
https:// doi. org/ 10. 1016/j. media. 2021. 102271.

 26. Cootes TF, Taylor CJ, Cooper DH, Graham J. Active shape models—their 
training and application. Comput Vis Image Underst. 1995;61(1):38–59.

 27. Davies RH, Twining CJ, Cootes TF, Waterton JC, Taylor CJ. 3D statisti‑
cal shape models using direct optimisation of description length. 
Computer Vision—ECCV 2002. 2002; pp. 3–20. https:// doi. org/ 10. 
1007/3‑ 540‑ 47977‑5_1

 28. Lüthi M, Blanc R, Albrecht T, et al. Statismo—a framework for PCA based 
statistical models. Insight J. 2012. https:// doi. org/ 10. 54294/ 4eli51.

https://doi.org/10.5772/intechopen.99155
https://doi.org/10.5772/intechopen.99155
https://doi.org/10.1016/B978-0-12-810493-4.00012-2
https://doi.org/10.1016/B978-0-12-810493-4.00012-2
https://doi.org/10.1007/978-3-030-19385-0_5
https://doi.org/10.1016/j.media.2021.102271
https://doi.org/10.1007/3-540-47977-5_1
https://doi.org/10.1007/3-540-47977-5_1
https://doi.org/10.54294/4eli51


Page 10 of 10Nguyen et al. Journal of Orthopaedic Surgery and Research          (2023) 18:398 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

 29. Durrleman S, Pennec X, Trouvé A, Ayache N. Statistical models of 
sets of curves and surfaces based on currents. Med Image Anal. 
2009;13(5):793–808.

 30. Bruse JL, McLeod K, et al. A statistical shape modelling framework to 
extract 3D shape biomarkers from medical imaging data: assessing arch 
morphology of repaired coarctation of the aorta. BMC Med Imaging. 
2016;16(1):40. https:// doi. org/ 10. 1186/ s12880‑ 016‑ 0142‑z.

 31. Kelemen A, Szekely G, Gerig G. Elastic model‑based segmentation of 3‑D 
neuroradiological data sets. IEEE Trans Med Imaging. 1999;18(10):828–39.

 32. Styner M, Oguz I, Xu S, et al. Framework for the statistical shape analysis 
of brain structures using SPHARM‑PDM. Insight J. 2006. https:// doi. org/ 
10. 54294/ owxzil.

 33. Styner M. Boundary and medial shape analysis of the hippocampus in 
schizophrenia. Med Image Anal. 2004;8(3):197–203. https:// doi. org/ 10. 
1016/j. media. 2004. 06. 004.

 34. Avants BB, Yushkevich P, Pluta J, et al. The optimal template effect 
in hippocampus studies of diseased populations. Neuroimage. 
2010;49(3):2457–66.

 35. Avants BB, Tustison NJ, Song G, Cook PA, Klein A, Gee JC. A reproducible 
evaluation of ANTs similarity metric performance in brain image registra‑
tion. Neuroimage. 2011;54(3):2033–44.

 36. Bai W, Shi W, de Marvao A, et al. A bi‑ventricular cardiac atlas built from 
1000+ high resolution MR images of healthy subjects and an analysis of 
shape and motion. Med Image Anal. 2015;26(1):133–45.

 37. Seidlitz J, Sponheim C, Glen D, et al. A population MRI brain template and 
analysis tools for the macaque. Neuroimage. 2018;170:121–31.

 38. Jenkinson M, Beckmann CF, Behrens TEJ, Woolrich MW, Smith SM. FSL 
NeuroImage. 2012;62(2):782–90.

 39. Ou Y, Sotiras A, Paragios N, Davatzikos C. DRAMMS: deformable registra‑
tion via attribute matching and mutual‑saliency weighting. Med Image 
Anal. 2011;15(4):622–39.

 40. Vogel D, Shah A, Coste J, Lemaire J‑J, Wårdell K, Hemm S. Anatomical 
brain structures normalization for deep brain stimulation in movement 
disorders. NeuroImage Clin. 2020;27:102271.

 41. Klein A, Andersson J, Ardekani BA, et al. Evaluation of 14 nonlinear defor‑
mation algorithms applied to human brain MRI registration. Neuroimage. 
2009;46(3):786–802.

 42. Pieper S, Halle M, Kikinis R. 3D Slicer. IEEE International Symposium on 
Biomedical Imaging: Macro to Nano. 2004; p. 632–635. doi: https:// doi. 
org/ 10. 1109/ ISBI. 2004. 13986 17

 43. Updegrove A, Wilson NM, Shadden SC. Boolean and smoothing of dis‑
crete polygonal surfaces. Adv Eng Softw. 2016;95:16–27. https:// doi. org/ 
10. 1016/j. adven gsoft. 2016. 01. 015.

 44. Avants B, Epstein C, Grossman M, Gee J. Symmetric diffeomorphic image 
registration with cross‑correlation: evaluating automated labeling of 
elderly and neurodegenerative brain. Med Image Anal. 2008;12(1):26–41.

 45. Tustison NJ, Avants BB. Explicit B‑spline regularization in diffeomorphic 
image registration. Front Neuroinform. 2013;7:39. https:// doi. org/ 10. 
3389/ fninf. 2013. 00039.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

https://doi.org/10.1186/s12880-016-0142-z
https://doi.org/10.54294/owxzil
https://doi.org/10.54294/owxzil
https://doi.org/10.1016/j.media.2004.06.004
https://doi.org/10.1016/j.media.2004.06.004
https://doi.org/10.1109/ISBI.2004.1398617
https://doi.org/10.1109/ISBI.2004.1398617
https://doi.org/10.1016/j.advengsoft.2016.01.015
https://doi.org/10.1016/j.advengsoft.2016.01.015
https://doi.org/10.3389/fninf.2013.00039
https://doi.org/10.3389/fninf.2013.00039

	Feasibility study for the automatic surgical planning method based on statistical model
	Abstract 
	Purpose 
	Methods 
	Results 
	Conclusion 

	Introduction
	Related work
	Contributions

	Materials and methods
	Preprocessing and splitting data
	Building average population model
	Evaluation before surgical planning
	Validation for surgical planning

	Results
	Discussion and conclusion
	Acknowledgements
	References


