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Abstract 

Background  Tendon injuries are among the most common musculoskeletal disorders. Celecoxib possesses an effec-
tive anti-inflammatory activity in the tendon injury treatment. Lactoferrin has a great potential for the tendon regen-
eration. However, the efficacy of celecoxib combined with lactoferrin in the treatment of tendon injury has not been 
reported. In this study, we aimed to investigate the effect of celecoxib and lactoferrin on tendon injury and repair, and 
screen for the crucial genes associated with the tendon injury and repair.

Methods  The rat tendon injury models were established and divided into four groups: normal control group (n = 10), 
tendon injury model group (n = 10), celecoxib treatment group (n = 10), and celecoxib + lactoferrin treatment group 
(n = 10). Then, RNA sequencing was performed to identify differentially expressed lncRNAs (DElncRNAs), miRNAs 
(DEmiRNAs) and mRNAs (DEmRNAs) in celecoxib treatment group and celecoxib + lactoferrin treatment group. Next, 
autophagy/hypoxia/ferroptosis/pyroptosis-related DEmRNAs were further identified. Subsequently, functional enrich-
ment, protein–protein interaction (PPI) network and transcriptional regulatory network construction for these genes 
were performed.

Results  The animal study demonstrated that combinational administration of celecoxib with lactoferrin rescued 
the harmful effects caused by celecoxib in the treatment of tendon injury. Compared to tendon injury model group, 
945 DEmRNAs, 7 DEmiRNAs and 34 DElncRNAs were obtained in celecoxib treatment group, and 493 DEmRNAs, 8 
DEmiRNAs and 21 DElncRNAs were obtained in celecoxib + lactoferrin treatment group, respectively. Subsequently, 
376 celecoxib + lactoferrin treatment group-specific DEmRNAs were determined. Then, 25 DEmRNAs associated with 
autophagy/hypoxia/ferroptosis/pyroptosis were identified.

Conclusions  Several genes, such as, Ppp1r15a, Ddit4, Fos, Casp3, Tgfb3, Hspb1 and Hspa8, were identified to be 
associated with tendon injury and repair.
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Introduction
Musculoskeletal disorders exert the significant detri-
mental effect on the life quality of patients [1]. Multiple 
pathological factors are associated with tendon injury, 
including trauma, aging, inflammation, chronic overuse, 
and genetic factors. The mechanisms of injury include 
some types of overload or overuse of the tendon that 
most likely lead to tendon degeneration, cell phenotype 
changes and hypervascularization [2]. In the clinical 
work, nonsteroidal anti-inflammatory drugs (NSAIDs) 
are used to treat tendon injury, such as, selective COX-2 
inhibitor and celecoxib. Celecoxib possesses an effective 
analgesic and anti-inflammatory activity in the tendon 
injury treatment [3]. The side effects of celecoxib include 
inhibition of tendon cell proliferation and migration, 
which can adversely affect tendon healing [4]. Lactofer-
rin, an iron-binding glycoprotein, functions as an osteo-
genic growth factor and enhance the proliferation and 
differentiation of osteoblasts, and has a great potential for 
the tendon regeneration [5]. Moreover, when lactoferrin 
is used in combination with non-steroidal anti-inflam-
matory drugs, the inhibitory effects on tenocyte prolif-
eration, viability, and collagen formation are rescued [6]. 
We have previously shown that lactoferrin is anabolic to 
human tenocytes in  vitro and reverses potential inhibi-
tory effects of NSAIDs on human tenocytes [7]. To date, 
the efficacy of celecoxib combined with lactoferrin in the 
treatment of tendon injury has not been reported.

Tendon fibroblasts play an important role in remod-
eling phase of wound healing [8]. In tendon injury, high 
glucose can repress the proliferation of tendon fibro-
blasts by inhibiting autophagy activation [9]. It has been 
indicated that hypoxia has a critical function in chon-
drogenesis, osteogenesis and angiogenesis, and plays an 
essential role in the tissue repair process [10]. Zhao et al. 
reported that hypoxia was essential for bone–tendon 
junction healing [11]. Yu et  al. suggested that hypoxia 
enhanced tenocyte differentiation of adipose-derived 
mesenchymal stem cells [12]. Chen et  al. demonstrated 
that hypoxia-induced mesenchymal stem cells exhibited 
stronger tenogenic differentiation capacities [13]. Ferrop-
tosis, a new form of regulated cell death (driven by iron-
dependent lipid peroxidation), is involved in a variety of 
diseases [14]. Iron is a key element that plays a crucial 
role in mammalian cells (such as osteoclast) [15]. Ni et al. 
demonstrated that ferroptosis was involved in osteoclas-
togenesis [16]. Pyroptosis (also known as cell inflamma-
tory necrosis) is a programmed cell death mode closely 
associated with the inflammatory response and mediated 
by caspase-1 or caspase-11 [17, 18]. In alveolar bone, 
high glucose concentration may activate pyroptosis to 
inhibit the proliferation and differentiation of osteoblasts 
[19]. Under certain pathological conditions, pyroptosis 

may occur in osteoblasts, affect their proliferation and 
differentiation and consequently affect the development 
and morphological changes of bone tissue [20].

In this study, we performed animal studies to investi-
gate the efficacy of celecoxib combined with lactoferrin 
in the treatment of tendon injury. Then, differentially 
expressed mRNAs (DEmRNAs), differentially expressed 
miRNAs (DEmiRNAs) and differentially expressed lncR-
NAs (DElncRNAs) in celecoxib treatment group and 
celecoxib + lactoferrin treatment group were identified. 
As we mentioned above, autophagy/hypoxia/ferropto-
sis/pyroptosis may be associated with tendon injury and 
repair. Hence, autophagy/hypoxia/ferroptosis/pyropto-
sis-related gene sets were downloaded for subsequent 
analysis. In this study, we aimed to investigate the effect 
of celecoxib and lactoferrin on tendon injury and repair, 
and screen for the crucial genes associated with the ten-
don injury and repair.

Materials and methods
Animal model
A total of 40 six-week-old Sprague–Dawley rats weight-
ing 200–300  g were used. The rats were housed under 
a 12-h light/dark cycle in a pathogen-free area with 
free access to water and food. All animals were treated 
according to institutional guidelines for laboratory ani-
mal treatment and care. All experimental procedures 
were approved by the Animal Research Ethics Commit-
tee of our hospital.

Rats were randomly divided into four groups: nor-
mal control group (n = 10), tendon injury model group 
(n = 10), celecoxib treatment group (n = 10), and 
celecoxib + lactoferrin treatment group (n = 10). Lacto-
ferrin was purchased from Wuhan Nuohui Pharmaceu-
tical & Chemical Co., LTD. Following 1 week of feeding 
and adaptation, the rats were anesthetized. The mid-
point of the achilles tendon was transected and sutured 
immediately. The tendon was not cut in the normal con-
trol group, and other operations were the same as those 
in the experimental group. Celecoxib (10  mg/kg) were 
injected daily at the site of injury in each rat in celecoxib 
treatment group. Celecoxib (10  mg/kg) and lactoferrin 
(2 g/kg) were injected daily at the site of injury in each rat 
in celecoxib and lactoferrin treatment group.

Hematoxylin and eosin (HE) staining, Masson staining 
and immunohistochemistry
Rats were sacrificed on the 1st, 14th, and 28th day after 
surgery. Three rats in each group were sacrificed on the 
1st and 14th day, and four rats were sacrificed on the 
28th day. Then, the tendon of the injured site was col-
lected. For histological analysis, tendons were fixed in 4% 
paraformaldehyde for 24 h. Sagittal paraffin sections were 
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prepared by embedding the samples in paraffin and cut-
ting into 4  µm thick sections. Four sections per sample 
were stained with HE and observed under the OLYM-
PUS EX-51 microscope (Tokyo, Japan) at 100 × magnifi-
cation. Masson’s trichrome stain (Solarbio, G1340) was 
performed according to kit directions. RECA-1 is a cell 
surface antigen expressed by rat endothelial cells. In this 
study, RECA-1 was selected for immunohistochemis-
try analysis on days 1, 14 and 28. Then, 5-μm-thick con-
tinuous sections were incubated with an anti-RECA-1 
antibody (abcam, ab22492, 1:1000) produced in rabbit 
followed by goat anti-rabbit immunoglobulin antibody 
conjugated by horseradish peroxidase. Then, slides were 
visualized using diaminobenzidine (DAB) substrate.

RNA isolation and sequencing
We selected samples from injury model group, celecoxib 
treatment group and celecoxib + lactoferrin treatment 
group on day 14 for subsequent RNA sequencing. Total 
RNA was harvested using TRIzol reagent (Invitrogen, 
Carlsbad, CA, USA) from the tendons. With Agilent 2100 
and Nanodrop2000, the quality of RNA was assessed. The 
quality of the libraries was determined using an Agilent 
2100 Bioanalyzer and ABI StepOnePlus Real-Time PCR 
System. Illumina Hiseq x-ten platform was used to per-
form RNA sequencing for mRNA and lncRNA. The raw 
sequencing data were submitted to sequencing quality 
control by FastQC. Reads with low quality were removed. 
BGISEQ-500 platform was used for RNA sequencing for 
miRNA. The Fastx-Toolkit was used to trim 5’ and 3’ seg-
ments of reads to remove bases (with mass < 20 and delete 
reads with N > 10%). The Rfam was used for annotation 
analysis on measured small RNA with BLAST v2.3.0. The 
mature miRNA and miRNA precursor sequences were 
downloaded from miRBase. The expression of miRNA 
was quantified with miRDeep2. HISAT2 was used to 
align the clean reads with the reference genome, Ensem-
ble Rnor_6.0.

Differential expression analysis
By using DESeq2, the DEmRNAs and DElncRNAs were 
identified with p-value < 0.05. With DEGseq2, DEmiR-
NAs were identified with p-value < 0.05 as well. With 
R package “pheatmap,” hierarchical clustering analysis 
was performed. David 6.8 was applied to perform GO 
and KEGG enrichment analysis for DEmRNAs with 
p-value < 0.05. Particularly, celecoxib + lactoferrin treat-
ment group-specific DEmRNAs were further obtained.

Identification of genes associated with autophagy/
hypoxia/ferroptosis/pyroptosis
Autophagy-related genes were extracted from Human 
Autophagy Database (HADb, http://​www.​autop​hagy.​

lu/​index.​html) and the GOBP REGULATION OF 
AUTOPHAGY gene set in Molecular Signatures Data-
base (MSigDB). Totally, 516 autophagy-related genes 
were included for subsequent analysis. Then, 200 
hypoxia-related genes were retrieved from the MSigDB. 
A total of 267 ferroptosis-related genes were retrieved 
from the FerrDb dataset (http://​www.​zhoun​an.​org/​
ferrdb/) and the previous literature [21]. In addition, 41 
pyroptosis-related genes were retrieved from the pre-
vious literature [22–24]. Finally, genes associated with 
autophagy/hypoxia/ferroptosis/pyroptosis were obtained 
by overlapping celecoxib + lactoferrin treatment group-
specific DEmRNAs with autophagy/hypoxia/ferroptosis/
pyroptosis-related genes, respectively.

Functional annotation and protein–protein interaction 
(PPI) network construction
In order to explore the biological functions and the 
potential pathways of the genes associated with 
autophagy/hypoxia/ferroptosis/pyroptosis, David 6.8 was 
utilized to perform GO and KEGG enrichment analysis. 
A p-value < 0.05 was considered statistically significant. 
Online database STRING (https://​string-​db.​org) was 
used to analyze the PPI networks.

Construction of transcriptional regulatory networks
Potential transcription factors (TFs) targeted to the genes 
associated with autophagy/hypoxia/ferroptosis/pyrop-
tosis were identified using the transcriptional regulatory 
relationships unraveled database. The TF-gene regulatory 
networks were visualized by using Cytoscape software.

Results
Celecoxib combined with lactoferrin treatment decreased 
inflammatory cell and the degree of fiber structure 
disorder
In Fig.  1A, HE staining confirmed that the injured 
tendon had more inflammatory cell nuclei, obvi-
ous inflammation infiltration, and disorder of fiber 
structure in injury model group compared with the 
other three groups. The number of inflammatory cell 
nuclei decreased in the celecoxib treatment group and 
celecoxib + lactoferrin treatment group compared with 
the injury model group. The degree of fiber structure 
disorder also decreased in the celecoxib treatment 
group and celecoxib + lactoferrin group compared 
with the injury model group. In Fig.  1B and 1D, Mas-
son’s trichrome staining showed that the injury model 
group had fewer collagen fibers and the collagen fiber 
structure was obviously disordered compared with the 
normal control group. Compared with the celecoxib 
treatment group, celecoxib + lactoferrin group formed 
new collagen fibers and increased the proportion of 

http://www.autophagy.lu/index.html
http://www.autophagy.lu/index.html
http://www.zhounan.org/ferrdb/
http://www.zhounan.org/ferrdb/
https://string-db.org
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positive staining area. In Fig. 1C and 1F, compared with 
the injury model group, the distribution of RECA-1 
protein in the celecoxib + lactoferrin group significantly 
increased. The distribution range of RECA-1 protein in 
the celecoxib treatment group and celecoxib + lacto-
ferrin group increased, and the color became darker, 
indicating that the inflammation recovery period led 
to the proliferation of new capillaries and increased 
blood vessels. According to the scope and color depth, 
the celecoxib + lactoferrin treatment group has a wider 
range and darker color than the celecoxib treatment 
group, indicating that the inflammatory recovery is bet-
ter in celecoxib + lactoferrin treatment group compared 
with the celecoxib treatment group.

Screening of DEmRNAs, DEmiRNAs and DElncRNAs
Compared to tendon injury model group, 945 (548 up-
regulated and 397 down-regulated) DEmRNAs, 7 (5 up-
regulated and 2 down-regulated) DEmiRNAs and 34 (20 
up-regulated and 14 down-regulated) DElncRNAs were 
obtained in celecoxib treatment group, and 493 (219 
up-regulated and 274 down-regulated) DEmRNAs, 8 
(3 up-regulated and 5 down-regulated) DEmiRNAs and 
21 (8 up-regulated and 13 down-regulated) DElncRNAs 
were obtained in celecoxib + lactoferrin treatment group, 
respectively. The heatmap of DEmRNAs, DEmiRNAs and 
DElncRNAs is shown in Figs.  2 and 3. GO enrichment 
analysis revealed that these biological processes such as 
blood vessel development, bone development, muscle 

Fig. 1  HE staining (A), Masson staining (B) and immunohistochemistry (C) of tendons in normal control group, injury model group, celecoxib 
treatment group, celecoxib + lactoferrin treatment group on day 14. Scale bar = 50 μm. D Quantification analysis of Masson staining. E 
Quantification analysis of immunohistochemistry. * indicates p < 0.05, ** indicates p < 0.01
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cell differentiation, and muscle tissue development were 
dysregulated in celecoxib treatment group (Additional 
file  1: Figure S1A). KEGG pathway analysis highlighted 
that MAPK signaling pathway, ECM-receptor interac-
tion, T cell receptor signaling pathway and GnRH sign-
aling pathway were dysregulated in celecoxib treatment 
group (Additional file  1: Figure S1B). GO enrichment 
analysis revealed that these biological processes such as 
skeletal muscle cell differentiation, response to hypoxia, 
positive regulation of smooth muscle cell proliferation 
and negative regulation of cell proliferation were dys-
regulated in celecoxib + lactoferrin treatment group 
(Additional file  2: Figure S2A). KEGG pathway analysis 
highlighted that MAPK signaling pathway, HIF-1 sign-
aling pathway, cAMP signaling pathway and PI3K-Akt 
signaling pathway were dysregulated in celecoxib + lacto-
ferrin treatment group (Additional file  2: Figure S2B). 
Due to the small number of DEmiRNAs and DElncRNAs, 
our next research focus is mainly on DEmRNAs. Subse-
quently, 376 (169 up-regulated and 207 down-regulated) 

celecoxib + lactoferrin treatment group-specific DEm-
RNAs were determined (Additional file  3: Figure S3). 
Also, the ceRNA network was built, but no results were 
available.

Identification of genes associated with autophagy/
hypoxia/ferroptosis/pyroptosis
In order to further investigate what role the 
celecoxib + lactoferrin treatment group-specific DEm-
RNAs play in tendon injury repair, the autophagy/
hypoxia/ferroptosis/pyroptosis-related gene sets were 
retrieved from the corresponding databases and related 
literature. In total, 25 genes associated with autophagy/
hypoxia/ferroptosis/pyroptosis were obtained by over-
lapping celecoxib + lactoferrin treatment group-specific 
DEmRNAs with autophagy/hypoxia/ferroptosis/pyrop-
tosis-related genes, respectively (Table  1). In addition, 
6 genes (Hspb1, Fos, Gapdh, Ppp1r15a, Casp3, and 
Ddit4) were associated with at least two of autophagy, 
hypoxia, ferroptosis, and pyroptosis.

Fig. 2  The heatmap of DEmRNAs (A), DEmiRNAs (B) and DElncRNAs (C) between injury model group and celecoxib treatment group on day 14
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Functional annotation and PPI network construction
GO enrichment analysis revealed that these 25 genes 
were significantly enriched in negative regulation 
of apoptotic process, aging and response to hypoxia 
(Fig.  4A). KEGG pathway analysis highlighted that 
MAPK signaling pathway, HIF-1 signaling pathway and 
TNF signaling pathway were dysregulated (Fig.  4B). 
The PPI network included 25 proteins, which con-
sisted of two subgroups: 17 proteins with strong con-
nections with others and 8 separated proteins (Fig. 5). 
Among them, Hspa8 and Hspb1 had the highest inter-
action score, which was 0.951.

Construction of TF‑gene regulatory network
A total of 12 genes targeted by TFs were identified, 
including Casp3, Cited2, Cryab, Ddit4, Eif4e, Fos, Hspb1, 
Itgb4, Noct, Slc6a6, Slc40a1, and Tgfb3 (Fig. 6). Among 
which, Fos, Casp3, Slc6a6, Ddit4 can be regulated by 
Trp53. It is noted that Fos can be regulated by itself.

Discussion
In this study, the rat tendon injury models were estab-
lished and divided into four groups: normal con-
trol, tendon injury model, celecoxib treatment and 
celecoxib + lactoferrin treatment groups. Based on the 
results of HE staining, Masson staining and immunohis-
tochemistry, we speculated that combinational admin-
istration of celecoxib with lactoferrin could rescue the 
harmful effects caused by celecoxib in the treatment of 
tendon injury. Then, the RNA sequencing and bioinfor-
matics analysis indicated that compared to tendon injury 
model group, 945 DEmRNAs, 7 DEmiRNAs and 34 DEl-
ncRNAs were obtained in celecoxib treatment group, 
and 493 DEmRNAs, 8 DEmiRNAs and 21 DElncRNAs 
were obtained in celecoxib + lactoferrin treatment group. 
Given the small number DEmiRNAs and DElncRNAs 
obtained, we focused on DEmRNAs in the subsequent 
analysis. Then, 376 celecoxib + lactoferrin treatment 
group-specific DEmRNAs were determined. Next, 25 

Fig. 3  The heatmap of DEmRNAs (A), DEmiRNAs (B) and DElncRNAs (C) between injury model group and celecoxib + lactoferrin treatment group 
on day 14
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DEmRNAs associated with autophagy/hypoxia/ferrop-
tosis/pyroptosis were obtained. Finally, several genes, 
such as, Ppp1r15a, Ddit4, Fos, Casp3, Tgfb3, Hspb1 and 

Hspa8, were identified to be associated with tendon 
injury and repair.

Aberrant mammalian target of rapamycin (mTOR) 
complex 1 (mTORC1) signaling is associated with altered 
bone homeostasis [25]. Protein phosphatase 1 regulatory 
subunit 15A (PPP1R15A), also known as GADD34, is a 
positive regulator of osteoclastogenesis and suppresses 
mTORC1 activity at the later stages of osteoclastogenesis 
[26]. DNA-damage-inducible transcript 4 (DDIT4) is an 
inhibitor of mTOR signaling [27]. DDIT4 confers a pro-
tective effect on radiation-induced premature senescence 
in osteoblast cells [28]. The JUN class of transcription 
factors is composed of heterdimers of Fos-related fac-
tors and Jun proteins, which is an important transcrip-
tion factor in osteoblastic differentiation [29]. The c-Fos 
and c-Jun genes are the commonly studied member of 
the cellular immediate-early genes [30]. FOS is reported 
to improve tendon healing by promoting tendon cell pro-
liferation and differentiation and regulating the inflam-
matory response [31]. A previous study suggested that 
ultrasound increased bone morphogenetic protein-2 
expression in osteoblasts via the PI3K, Akt, c-Fos/c-Jun, 
and AP-1 signaling pathways [32].

Heat shock proteins are classified based on their 
molecular weights and include small HSPs, HSP40, 
HSP60, HSP70, HSP90, and large HSPs (HSP110 and 
glucoseregulated protein 170, GRP170) [33]. Heat shock 
protein family B (small) member 1 (HSPB1), also known 
as HSP27, is a member of the small heat shock protein 
family, which participates in the regulation of multiple 
physiological and pathophysiological cell functions. Ele-
vated HSPB1 was related to estrogen-induced resistance 
to osteoblast apoptosis [34]. Unphosphorylated HSPB1 
suppresses fibroblast growth factor-2-stimulated vascular 

Table 1  The list of autophagy/hypoxia/ferroptosis/pyroptosis-
related genes

Gene Type

HSPB1 Autophagy/ferroptosis-related gene

FOS Autophagy/hypoxia-related gene

GAPDH Autophagy/hypoxia-related gene

PPP1R15A Autophagy/hypoxia-related gene

CASP3 Autophagy/pyroptosis-related gene

AMBRA1 Autophagy-related gene

EIF2AK2 Autophagy-related gene

HSPA8 Autophagy-related gene

IRGM Autophagy-related gene

ITGB4 Autophagy-related gene

BMF Autophagy-related gene

DNM1L Autophagy-related gene

EIF4E Autophagy-related gene

LRSAM1 Autophagy-related gene

NRBP2 Autophagy-related gene

PLEKHF1 Autophagy-related gene

TECPR1 Autophagy-related gene

DDIT4 Hypoxia/ferroptosis-related gene

SLC40A1 Ferroptosis-related gene

TFRC Ferroptosis-related gene

CRYAB Ferroptosis-related gene

CITED2 hypoxia-related gene

NOCT Hypoxia-related gene

SLC6A6 Hypoxia-related gene

TGFB3 Hypoxia-related gene

Fig. 4  GO (A) and KEGG (B) enrichment analysis of the genes associated with autophagy/hypoxia/ferroptosis/pyroptosis BP: biological process; CC: 
cytological component; MF: molecular function
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endothelial growth factor release in osteoblasts [35]. 
HSPB1 suppressed platelet-derived growth factor-BB 
induced cell migration of osteoblasts [36]. Phosphoryl-
ated HSPB1 was involved in the pathogenesis of osteopo-
rosis [37]. Heat shock protein family A (Hsp70) member 
8 (HSPA8) is a member of the heat shock protein 70 fam-
ily. The association of MNSFβ with HSPA8 may promote 
RANKL-induced osteoclastogenesis [38].

Caspase-3, one of the major activated cysteine pro-
teases, constitutes the caspase family. You et  al. inves-
tigated the effect of CASP3 inhibition on osteoblast 
differentiation capacity in high glucose conditions in 

mouse osteoblastic cell line MC3T3-E1 [39]. Mogi sug-
gested that caspase activity could be required for osteo-
genic differentiation of osteoblastic cell [40]. Slawomir 
and his colleagues reported that CASP3, a pro-inflamma-
tory factor involved in the TNF-α transduction pathway, 
was expressed in the injured tendon tissues of patients 
with rotator cuff tendinopathy [41]. CASP3 is suggested 
to be necessary for extracellular matrix remodeling in rat 
patellar tendon [42]. The transforming growth factor-β 
(TGFβ) family is expressed in various cell types and plays 
a crucial role in cellular division, migration, adhesion, 
differentiation, and programmed death [43]. The vascular 

Fig. 5  PPI network each node represents a protein, while each edge represents one protein–protein association
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smooth muscle cells proliferation pathways are known 
to be associated with various mRNAs and non-coding 
RNAs [44–46]. A certain level of active TGF-beta sup-
pressed MMP-2 expression to promote the contractile 
phenotype of vascular smooth muscle cells [47]. TGF-β3 
effectively protected against flexor tendon injury via reg-
ulating adhesion formation through the JNK/c-Jun path-
way [48].

Conclusions
In the present study, multiple bioinformatics analy-
sis methods were applied to identify genes that play a 
key role in tendon injury and repair. Hspb1 was identi-
fied as an autophagy/ferroptosis-related gene, Fos and 
Ppp1r15a were identified as autophagy/hypoxia-related 
genes, Casp3 was identified as an autophagy/pyropto-
sis-related gene, Hspa8 was identified as an autophagy-
related gene, Tgfb3 was identified as a hypoxia-related 
gene, and Ddit4 was identified as a hypoxia/ferrop-
tosis-related gene. Hspa8 and Hspb1 had the highest 
interaction score in PPI network, which was 0.951. In 
addition, transcriptional regulatory network indicated 
that Fos can be regulated by itself. The above analysis 
results demonstrate the important role of these genes 

in tendon injury and repair from different perspectives. 
Also, the mechanism remained largely unknown. Our 
further research endeavors will concentrate on eluci-
dating the fundamental mechanisms underlying the 
effect of celecoxib and lactoferrin on tendon injury and 
repair, including the intricate signaling pathways and 
protein expression profiles involved.

Abbreviations
DAB	� Diaminobenzidine
DDIT4	� DNA-damage-inducible transcript 4
DElncRNAs	� Differentially expressed lncRNAs
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HSPB1	� Heat shock protein family B (small) member 1
MSigDB	� Molecular signatures database
mTOR	� Mammalian target of rapamycin
mTORC1	� Mammalian target of rapamycin complex 1
NSAIDs	� Clinical work, nonsteroidal anti-inflammatory drugs
PPI	� Protein–protein interaction
PPP1R15A	� Protein phosphatase 1 regulatory subunit 15A
TFs	� Transcription factors
TGFβ	� Transforming growth factor-β

Fig. 6  TF regulatory networks Red and green circles represent up- and down-regulated DEmRNAs. Rhombuses represent transcription factors (TFs). 
Edges indicate TF-DEmRNAs interactions
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