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Abstract 

Background To develop and assess the performance of machine learning (ML) models based on magnetic reso-
nance imaging (MRI) radiomics analysis for knee osteoarthritis (KOA) diagnosis.

Methods This retrospective study analysed 148 consecutive patients (72 with KOA and 76 without) with available 
MRI image data, where radiomics features in cartilage portions were extracted and then filtered. Intraclass correlation 
coefficient (ICC) was calculated to quantify the reproducibility of features, and a threshold of 0.8 was set. The training 
and validation cohorts consisted of 117 and 31 cases, respectively. Least absolute shrinkage and selection opera-
tor (LASSO) regression method was employed for feature selection. The ML classifiers were logistic regression (LR), 
K-nearest neighbour (KNN) and support vector machine (SVM). In each algorithm, ten models derived from all avail-
able planes of three joint compartments and their various combinations were, respectively, constructed for compara-
tive analysis. The performance of classifiers was mainly evaluated and compared by receiver operating characteristic 
(ROC) analysis.

Results All models achieved satisfying performances, especially the Final model, where accuracy and area under ROC 
curve (AUC) of LR classifier were 0.968, 0.983 (0.957–1.000, 95% CI) in the validation cohort, and 0.940, 0.984 (0.969–
0.995, 95% CI) in the training cohort, respectively.

Conclusion The MRI radiomics analysis represented promising performance in noninvasive and preoperative KOA 
diagnosis, especially when considering all available planes of all three compartments of knee joints.

Keywords KOA diagnosis, Magnetic resonance imaging (MRI), Machine learning, Radiomics

Introduction
Being one of the commonest among joint diseases, knee 
osteoarthritis (KOA) is generally first noticed via a series 
of clinical manifestations (i.e. pain, tenderness, motion 
limitation, bone swelling, joint deformity, instability, 
proprioception loss, etc.) rather than with imaging man-
ners, which most occur before symptoms do [1, 2]. De 
facto, all the formers do not always occur for subjects in 
early phases, and once were the symptoms hence atypi-
cal, the latter, generally referring to plain filming by com-
puted radiography (CR) and magnetic resonance imaging 
(MRI), could be utilised to further confirm arthritis situ-
ations [3, 4].
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The imaging techniques provide us opportunities to 
recognise early pathological changes of the affected 
joints. CR films display osteophytes, narrowed joint 
spaces and altered subchondral bone mineral density 
(BMD) [5, 6]. As regards MRI, comparing with CR, could 
better recognise more subtle pathological changes such 
as bone oedema, cartilage lesion and ligament injury, 
which are important in evaluation and classification of 
KOA [5–7].

Radiomics is a burgeoning batch of strategies adopting 
machine learning (ML) stuffs and high-flux automated 
extractions and analyses of interested quantitative data 
from clinical imaging outcomes [8, 9], and MRI radiom-
ics is particularly more accounted of for its delicate reso-
lution in aquiferous tissues [5–7]. However, has it been 
preliminarily applied in oncology in terms of diagnosis, 
staging and evaluation [9–12], the applications of radi-
omics in KOA have just gotten off the ground.

There have been a respectable number of CR radi-
omics studies on KOA or related issues, some of which 
devoted to detection and classification of KOA itself 
[13–17], while others provided with patterns for discov-
ery or evaluation of related pathological changes [18, 19], 
exempli gratia, subchondral bone changes and cartilage 
loss. On the other hand, studies concerning MRI radiom-
ics analyses on KOA, which most investigated features 
extracted from articular cartilage [20–23], subchondral 
bone [24–26] or infrapatellar fat [27–29] et al. for KOA 
identification, onset detection or progression evaluation, 
have been growing conspicuous mostly due to advantages 
of MRI over CR. Nevertheless, present studies gave more 
priority to casting in different ways on off-the-peg scor-
ing systems determining severity or progression stages of 
the KOA [20, 21, 25–29] or to simply evaluating patho-
logical changes shown in MRI images [22–24], which 
appeared not quite immediate or completed for diagnosis 
of the disease of KOA itself.

Consequently, the purpose of our study was to vali-
date efficacy of MRI radiomics strategies in KOA evalu-
ation, to confirm features of which combination(s) of 
compartments of the knee show better performance and 
to explore the ML models which were potentially avail-
able for practical utilities, that is, direct inference of KOA 
diagnoses.

Materials and methods
Patients
This retrospective study consecutively enrolled 148 
patients with single knee MRI images acquired dur-
ing the month of September, 2021. The subjects were 
divided into the KOA and non-KOA groups in line 
with the KOA diagnostic codes in Guideline (of China) 
for diagnosis and management of osteoarthritis (2018 

edition) (Table  1) [30]. There were 78 left knees and 
70 right included in total; the KOA group included 72 
cases (34 males, 38 females; 39 left, 33 right; mean age, 
52.32 ± 13.95  years; range, 23–83  years). The non-KOA 
group included 76 case (61 males, 15 females; 39 left, 37 
right; mean age, 33.16 ± 11.24 years; range, 20–81 years). 
The data of body mass index (BMI, 24.30 ± 1.98  kg/m2, 
derived from body weight [67.85 ± 7.84  kg] and height 
[1.67 ± 0.09 m]), were also collected, yet those of only 53 
subjects out of 148 (35.8%) were available, for these sta-
tistics are not routinely acquired at clinic of our centre.

Image data acquisition
All MR images were obtained with 1.5  T MR scanners 
(EchoStar 16-channel head coil, Alltech Medical Sys-
tems, Chengdu, China; Signa Highspeed 8-channel head 
coil, GE Healthcare, Milwaukee, USA). The MR proto-
col included fast spin-echo (FSE) T1-weighted images 
(T1WI) plus FSE T2-weighted images (T2WI) in the 
axial, coronal and sagittal planes.

Image segmentation
A flow chart depicting image preparation, feature extrac-
tion, feature selection and model construction is pre-
sented in Fig. 1. To obtain the volume of interest (VOI) 
for further analysis, we uploaded all data to Radcloud 
platform (Huiying Medical Technology Co., Ltd). The 
VOIs of KOA were delineated manually by a radiologist 
with 10  years of experience in knee  imaging (radiolo-
gist 1). The delineated VOIs were from cartilage of three 
regions, namely the medial and lateral compartments of 
tibiofemoral joints and patellofemoral joints, respectively. 
The medial and lateral VOIs corresponded to sagittal 
and coronal views of the tibiofemoral surfaces, and the 
VOIs of the patella to the sagittal and transverse posi-
tions of the patellofemoral surfaces. Regions of interest 
(ROIs) were thus delineated manually in the MRI for 148 
patients, and VOIs were constructed by piling the slices 
of the corresponding ROIs in sequence. Thirty patients 

Table 1 KOA diagnostic codes in Guidelines (of China) for 
Diagnosis and Management of Osteoarthritis (2018 edition) [30]

Diagnosis confirmed when suffice No.1 + (≥ 2 items among No.2, 3, 4, 5)

No Manifestations

1 Repeated pain of knee within 1 month

2 Narrowed joint space, subchondral osteosclerosis and (or) cystic 
degeneration, osteophyte formation on joint margin shown in 
weight-bearing CR images

3  ≥ 50 y/o

4 Morning stiffness ≤ 30 min

5 Bony crepitus/ friction feeling during activity
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(with all VOIs delineated by radiologist 1) were then 
randomly selected from all subjects, and all VOIs were 
again delineated by a senior radiologist with 15  years 
of experience in imaging the knee  joint (radiologist 2) 
for these patients. The interclass correlation coefficient 
(ICC) among 1049 features of each sequence was calcu-
lated for the latter 30 patients. ICC greater than 0.80 was 
considered as in good agreement, and radiomic features 
with ICC below 0.8, which are generally considered to be 
unreproducible among radiologists, were deleted [31–
33]. Eventually, the work of radiologist 1 was used for 
further analysis. The two radiologists were blinded to the 
information of each subject. An example of the manual 
segmentation is shown in Fig. 2.

Feature extraction
For MR image data, 1049 radiomic features were 
extracted from MR image data using a tool (Features 
Calculation) from the Radcloud platform (https:// mics. 
huiyi huiyi ng. com/#/ subje ct). All the extracted radiomic 
features came from four categories: first-order statisti-
cal features, shape features, texture features and higher-
order statistical features. First-order statistics described 
the intensity information of ROIs in the MR images such 
as maximum, median, mean, standard deviation, vari-
ance and range. Shape features reflected the shape and 
size of the region, such as volume, compactness, maxi-
mal diameter and surface area. Texture features could 

quantify regional heterogeneity differences. Higher-order 
statistical features consisting of the texture and intensity 
features produced by filtering transformation and wave-
let transformation of the original MR Images: exponen-
tial, square, square root, logarithm and wavelet. Features 
are compliance with definitions as defined by the imaging 
biomarker standardisation initiative (IBSI) [34].

Feature selection
All datasets were used to assign 80% of datasets to the 
training cohort and 20% of datasets to the validation 
cohort. Optimal features were selected from the train-
ing cohort. Prior to the steps of feature selection, all 
radiomic features were standardised using the Standard-
Scaler function (in Python) by removing the mean and 
dividing by its standard deviation, and each set of fea-
ture value was converted to a mean of 0 with a variance 
of 1. Although radiomic features with ICC lower than 
0.80 were removed, there still remained a great quantity 
of features. To improve the accuracy of model prediction 
and reduce the influence of features redundancy, it is nec-
essary to remove redundant features and select the opti-
mal features. The variance threshold method (variance 
threshold = 0.8) and Select-K-Best method were adopted. 
The Select-K-Best method used P < 0.05 to determine 
optimal features related to the KOA. The least absolute 
shrinkage and selection operator (LASSO) regression 
method was used to decrease the degree of redundancy 

Fig. 1 A flow-chart presenting raw-image preparation, feature extraction, feature selection and model construction

https://mics.huiyihuiying.com/#/subject
https://mics.huiyihuiying.com/#/subject
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and irrelevance. The optimal α , which is the coefficient of 
regularisation in the LASSO method, was selected using 
inner tenfold cross-validation in the training cohort with 
the maximum iteration of 5000 via minimum average 
mean square error (MSE). Subsequently, the radiomics 
parameters with nonzero coefficients in the LASSO algo-
rithm generated by the whole training cohort with the 
optimal α were selected.

Model construction
The selected features were taken as the inputs for model 
construction to differentiate KOA from all patients. 
Images were classified as KOA or non-KOA using ML 
methods in combination with the selected features 
listed above. Models were constructed with ML algo-
rithms including logistic regression (LR), K-nearest 
neighbour (KNN) and support vector machine (SVM) 
in the training cohort. In the process of model build-
ing, every classifier was tuned and the hyperparameters 
were optimised to maximise the diagnostic perfor-
mance. In SVM algorithm, the hyperparameters of C 
(including 0.1, 0.8, 0.5, 1, 3, 5) and kernel (‘rbf ’, ‘linear’, 

‘sigmoid’) were included; in KNN algorithm, they were 
n_neighbours (the range is from 2 to 10) and algorithm 
(‘auto’, ‘ball_tree’, ‘kd_tree’); and in LR algorithm, the 
included hyperparameters were penalty (‘l1’, ‘l2’) and C 
(including 0.1, 0.5, 0.8, 1, 3, 5). The classification results 
were evaluated with a receiver operating characteristic 
(ROC) curve with the associated area under the ROC 
curve (AUC), accuracy, sensitivity and specificity.

In a single algorithm, 11 models were, respectively, 
constructed for comparative analysis. Three models of 
medial tibiofemoral VOIs were constructed, respec-
tively, including sagittal model (M-S model), coronal 
model (M-C model) and combined model of the sag-
ittal-coronal (M-S-C model). Similarly, three models 
of lateral tibiofemoral VOIs were constructed, respec-
tively, as sagittal model (L-S model), coronal model 
(L-C model) and combined model of the sagittal-coro-
nal (L-S-C model). In patellar VOIs, sagittal model (P-S 
model), transverse model (P–T model) and combined 
model of the sagittal-transverse (P-S-T model) were 
constructed. In addition, we combined all the features 
to build a comprehensive model (Final model, Final-M). 

Fig. 2 An example of manual segmentation. These were the MRI images of a female patient aged 69 y/o at clinic. Images (a), (b) and (c) are the 
original DICOM images in axial view, coronal view and sagittal view, respectively; (d), (e) and (f) are the manual annotation diagrams of (a), (b) and 
(c), respectively
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After training, estimations of the generalisation perfor-
mance of each model were validated in the validation 
cohort. Besides, clinical data of age, gender and BMI 
were taken into the construction of an additional model 
for clinical statistics analyses (Clnc model) rather than 
being mixed into the former 10 models mainly because 
of obvious missing of relevant BMI statistics.

Statistical analysis
All statistical analyses were performed using R soft-
ware version 3.3.0. Normalisation of features, selection 
of features and model construction were undertaken 
using Python 3.7.0, Scikit-learn package 0.19.2 and Pyra-
diomics package 2.2.0. Other statistical analyses were 
performed using R software version 3.3.0. ROC curve 
analysis was used to evaluate the diagnostic perfor-
mances of ML classifiers [95% confidence intervals (CIs), 
specificity and sensitivity were also calculated], and four 
indicators including P (precision = true positives/(true 
positives + false positives)), R (recall = true positives/(true 
positives + false negatives)), f1-score (f1-score = P*R*2/
(P + R)), support (total number in test set) to evaluate 
the performance of classifier in this study. The statistical 
analysis was performed in Radcloud platform (https:// 
mics. huiyi huiyi ng. com/).

Results
Feature extraction and feature selection
For the M-S model, 518 features were first screened from 
2098 features using the ICC test. Then, the 518 features 
were screened by the variance threshold algorithm (vari-
ance threshold = 0.8), Select-K-Best algorithm and Lasso 
algorithm, respectively. Finally, 16 optimal features were 
screened. By repeating the above steps, the M-C, M-S-C, 
L-S, L-C, L-S-C, P-S, P–T, P-S-T and Final model retained 
13, 16, 21,19, 35, 28, 15, 43 and 42 features as the optimal 
feature set, respectively (Table 2). In the four combined 
models (M-S-C, L-S-C, P-S-T and Final-M), the process 
of LASSO algorithms is shown in Additional file 1: Fig. 1.

Performance of the diagnosis models in predicting 
the KOA
The results of KNN algorithm, LR algorithm and SVM 
algorithm are shown in Table 3. In general, all the models 

achieved satisfying performance, especially in the com-
bined model (Final model), where accuracy and AUC 
of LR classifier were 0.968, 0.983 (0.957–1.000, 95% CI) 
in the validation cohort, compared to 0.940 and 0.984 
(0.969–0.995, 95% CI) in the training cohort, respectively.

Among the four combined models (M-S-C, L-S-C, 
P-S-T and Final-M), the LR algorithm showed better per-
formance in KOA diagnosis. In validation sets of each 
model, the AUC of LR algorithm ranged from 0.875 to 
0.983, and the accuracy ranged from 0.774 to 0.968. The 
ROC curves of the four models are shown in Fig. 3, Figs. 4 
and 5. However, the performance of Clnc model was 
apparently inferior to radiomics-based models. The SVM 
algorithm showed relatively more optimal performance 
in Clnc model, with the AUC of 0.747 in the training 
cohort and 0.715 in the validation cohort, respectively. 
The ROC curves of the Clnc model are shown in Fig. 6.

Discussion
Our models achieved direct inferences from cartilage 
lesions to KOA diagnosis by enumerating and analys-
ing filtered features extracted from MRI images of car-
tilage with the aid of various types of algorithms, before 
which the VOIs were manually, rather than automatedly, 
delineated by salted radiologists. There exist studies on 
automated ROI/VOI selection and evaluation manners 
of MRI images in KOA patients by virtue of ML. Nunes 
et  al. [22] completed their works on automated detec-
tion and staging of cartilage lesions and bone marrow 
oedema, yet only included diagnosed KOA subjects. 
Pedoia et  al. [23] developed their classification system 
merely on meniscal lesion. Therefore, what we have exca-
vated in our study is hitherto relatively rare.

Radiomics studies focusing on KOA were less per-
formed on MRI images comparing with CR. A respecta-
ble bunch of investigations based on CR image data were 
performed to extract meaningful features or give imme-
diate Kellgren–Lawrence classification data, employing 
different algorithms in various stages [13–15], and efforts 
for portable devices were also set on track [35]. In clini-
cal practice, CR is the much more used methods than 
MRI to screen KOA because of its convenience, economy 
and radiologic safety (comparing with CT of course), 
while MRI scanning is used in relatively rare situations to 

Table 2 The process of feature selection

M-S M-C M-S-C L-S L-C L-S-C P-S P–T P-S-T Final

Total features 2098 2098 4196 2098 2098 4196 1049 1049 2098 10,490

ICC 518 456 974 551 349 900 558 730 1288 3162

LASSO 16 13 16 21 19 35 28 15 43 42

Optimal feature set 16 13 16 21 19 35 28 15 43 42

https://mics.huiyihuiying.com/
https://mics.huiyihuiying.com/
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Table 3 Results of algorithms of KNN, LR and SVM

Algorithm Model Cohort AUC (95% CI) Accuracy Sensitivity Specificity

KNN M-S Train 0.786 (0.710–0.844) 0.701 0.614 0.783

Validation 0.712 (0.529–0.833) 0.613 0.533 0.688

M-C Train 0.805 (0.741–0.863) 0.718 0.544 0.883

Validation 0.771 (0.621–0.886) 0.645 0.533 0.750

M-S-C Train 0.866 (0.809–0.915) 0.786 0.667 0.900

Validation 0.860 (0.724–0.952) 0.839 0.733 0.938

L-S Train 0.832 (0.773–0.888) 0.744 0.667 0.817

Validation 0.706 (0.530–0.83) 0.677 0.533 0.875

L-C Train 0.835 (0.770–0.886) 0.735 0.649 0.817

Validation 0.752 (0.592–0.895) 0.710 0.667 0.750

L-S-C Train 0.867 (0.890–0.912) 0.778 0.632 0.917

Validation 0.796 (0.625–0.931) 0.839 0.733 0.938

P-S Train 0.774 (0.707–0.844) 0.667 0.561 0.767

Validation 0.694 (0.559–0.867) 0.677 0.553 0.813

P–T Train 0.834 (0.762–0.889) 0.769 0.702 0.833

Validation 0.721 (0.598–0.891) 0.677 0.600 0.750

P-S-T Train 0.846 (0.786–0.86) 0.769 0.684 0.850

Validation 0.950 (0.890–0.993) 0.903 0.933 0.875

Final-M Train 0.927 (0.878–0.960) 0.880 0.789 0.967

Validation 0.938 (0.862–0.988) 0.839 0.800 0.875

Clnc-M Train 0.695 (0.622–0.762) 0.684 0.632 0.733

Validation 0.692 (0.531–0.827) 0.642 0.600 0.688

LR M-S Train 0.813 (0.736–0.872) 0.718 0.737 0.700

Validation 0.883 (0.745–0.996) 0.742 0.733 0.750

M-C Train 0.774 (0.696–0.840) 0.726 0.684 0.767

Validation 0.733 (0.567–0.885) 0.710 0.800 0.625

M-S-C Train 0.830 (0.759–0.885) 0.744 0.719 0.767

Validation 0.875 (0.754–0.962) 0.774 0.733 0.813

L-S Train 0.876 (0.819–0.924) 0.795 0.789 0.800

Validation 0.913 (0.804–0.983) 0.806 0.733 0.875

L-C Train 0.839 (0.771–0.895) 0.761 0.702 0.817

Validation 0.842 (0.704–0.950) 0.742 0.800 0.688

L-S-C Train 0.917 (0.873–0.952) 0.821 0.789 0.850

Validation 0.938 (0.857–0.991) 0.871 0.800 0.938

P-S Train 0.884 (0.829–0.931) 0.786 0.754 0.817

Validation 0.883 (0.858–0.992) 0.806 0.867 0.750

P–T Train 0.885 (0.832–0.933) 0.821 0.754 0.883

Validation 0.908 (0.836–0.982) 0.742 0.667 0.813

P-S-T Train 0.977 (0.957–0.993) 0.932 0.947 0.917

Validation 0.921 (0.906–1.000) 0.806 0.867 0.750

Final-M Train 0.984 (0.969–0.995) 0.940 0.877 1.000

Validation 0.983 (0.957–1.000) 0.968 1.000 0.938

Clnc-M Train 0.684 (0.599–0.751) 0.684 0.544 0.817

Validation 0.644 (0.451–9.782) 0.645 0.533 0.451

SVM M-S Train 0.829 (0.752–0.885) 0.752 0.737 0.767

Validation 0.708 (0.521–0.850) 0.645 0.600 0.689

M-C Train 0.883 (0.826–0.929) 0.821 0.772 0.867

Validation 0.792 (0.647–0.919) 0.742 0.800 0.689

M-S-C Train 0.885 (0.822–0.931) 0.769 0.737 0.800
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explore details of the joints and exhibit cartilage, which 
could hardly be shown by the former [2, 6, 36]. However, 
this would surely affect the continuum of the included 
subjects in our study, for few subjects from clinics accept 
MRI scans. Furthermore, despite the advantages of MRI 
over CR on early stage detection of pathological changes 
[4, 7], the sensitivity in KOA diagnosis of 61% [3] is still 
low, requiring standard algorithms to further solidify 
diagnostic effectiveness. In this regard, our study had a 
meaningful attempt.

To our limited knowledge, our models were innovative 
to some extent, in which KOA diagnoses were developed 
without adopting any intact ready-made scoring system. 
There exist several semi-quantitative scoring systems in 
KOA, such as Whole-Organ MRI Score (WORMS) [37] 
or MRI osteoarthritis knee score (MOAKS) [38], utilis-
ing artificially accessible MRI features signs of the knee. 
These systems were developed to manage higher effec-
tiveness on diagnosis, and had been used as core idea 
in some of the radiomics studies [21–23, 26]. The crux 
of the matter is that any of the scoring systems were 
designed merely for precise diagnosis of KOA by quanti-
fying and weighing data that could be conveniently man-
ually acquired. Inasmuch as ML models could recognise 
necessary features and perform reliable analysis so that to 
best achieve the discrimination of the disease and even 
approach gold standard, we might not require a scoring 
system by rote anymore.

Additionally, it was concluded in our study that the 
more planes and compartments were picked among 
various permutation and combination for combined 
analyses, the better performances the models could 
achieve. The knee joints were divided into three com-
partments in our study, that is, lateral and medial tibi-
ofemoral compartments as well as the patellofemoral 
space. An MRI radiomics study working on subchon-
dral trabeculae developed their KOA severity assess-
ment from four individual ROIs out of two tibiofemoral 
compartments of knee joints [25]. Besides diagnosis 
deduction issues, it is pellucid that a sole plane/ROI 
out of a 3-dimentional system is apt to omit necessary 
details, and the exact compartment(s) where the patho-
logical changes of cartilage occur varies from patients 
and knees [2]. Therefore, full-scale data management 
would be necessary for future debugging and applica-
tion of KOA radiomics diagnosis models, in the inter-
est of both comprehensiveness of evaluation and deep 
going analyses of subjects with each kind of affected 
compartments.

Nevertheless, as any ML derived models, ours might 
have several ‘birth defects’ [16]. For instance, a large 
dataset would benefit model training [39]. The feature 
recognition model derived by Nunes et al. [22] brought 
into 1435 knees; the automated staging device devel-
oped by Suresha et  al. [17] used 7549 CR images for 
ML progressions, and a similar model by Tiulpin et al. 

Table 3 (continued)

Algorithm Model Cohort AUC (95% CI) Accuracy Sensitivity Specificity

Validation 0.817 (0.649–0.929) 0.710 0.733 0.688

L-S Train 0.920 (0.881–0.953) 0.821 0.789 0.850

Validation 0.838 (0.693–0.940) 0.774 0.667 0.875

L-C Train 0.888 (0.833–0.930) 0.786 0.719 0.850

Validation 0.829 (0.675–0.947) 0.806 0.800 0.813

L-S-C Train 0.941 (0.905–0.970) 0.821 0.754 0.883

Validation 0.896 (0.765–1.000) 0.839 0.800 0.875

P-S Train 0.923 (0.883–0.959) 0.821 0.772 0.867

Validation 0.867 (0.832–0.986) 0.806 0.733 0.875

P–T Train 0.915 (0.864–0.953) 0.838 0.789 0.883

Validation 0.858 (0.744–0.975) 0.806 0.733 0.875

P-S-T Train 0.956 (0.927–0.978) 0.846 0.789 0.900

Validation 0.879 (0.827–1.000) 0.806 0.733 0.875

Final-M Train 0.984 (0.968–0.996) 0.940 0.877 1.000

Validation 0.958 (0.895–1.000) 0.935 0.933 0.938

Clnc-M Train 0.747 (0.674–0.815) 0.667 0.667 0.667

Validation 0.715 (0.548–0.860) 0.710 0.733 0.688
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[14] subsumed 5960 knees. Our subject pool of 148 
knees in our study was an obvious shortcoming for an 
ML model. Concurrently, derivation processes of the 
ML-based models require external validations [40]. 
Internal validations are essential for ML model devel-
opment [22, 23], yet could not replace external valida-
tions; the latter demanding open-source software or 
data resources and accordingly remaining rare, would 
be required to help avoid selection bias [41]. Moreover, 
the ‘black box’ nature of ML models conceals inner log-
ics of inference, resulting in poor understanding of the 
generation of any judgements [42].

In terms of radiomics strategies applied, tenfold 
cross-validation was used in our analyses to screen the 
optimal features of the radiomics features. Yet in the 
subsequent model construction, due to the excessive 

training time and calculation consumption caused by 
the large count of established models (which was up to 
33), randomisation (in grouping), which had been uti-
lised by former studies [12, 43], was consequently also 
adopted for model construction instead of cross-valida-
tion. Additionally, as a set of models aiming at serving 
rapid, automatic and precise clinical diagnosis of KOA, 
fundamental statistics of patients, which were age, gen-
der, BMI, etc., which ought to be included in case of 
good performance [44], were reluctantly discarded in 
general MRI radiomics analyses due to critical missing 
caused by the yet-to-be-standardised clinic workflow. 
Such loss may result in yielding in further optimisa-
tion of the radiomics models. Therefore, we are plan-
ning in future studies for data collection on a larger and 

Fig. 3 The ROC curve of KNN algorithm
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all-round scale, and utility of cross-validation during 
grouping courses as well.

Besides the mentioned ones, numbers of limitations 
in our study still exist. First, such is in nature a cross-
sectional study, which included no prospective con-
tents, nor any prognosis datum. Second, because the 
enrolled images were directly extracted from the Digital 
Imaging and Communications in Medicine (DICOM) 
system by scanning date, the consecutiveness of sub-
jects would be harmed and thus increased the risk of 
bias. Third, we simply brought features of joint cartilage 
condition into diagnosis derivation process, which may 
lead to deviation in KOA recognition due to the lack of 
overall estimation of joint condition.

Conclusion
ML models for KOA diagnosis based on MRI radiom-
ics analysis were formed via various programs and algo-
rithms, before which the ROIs-VOIs were manually 
delineated. The model reached sound effects, and when 
combining all available planes of all three compartments 
of the knee joints (Final-M) and utilising the LR algo-
rithm, AUC, accuracy, sensitivity and specificity were, 
respectively, achieved to be 0.984 (0.969–0.995, 95% CI), 
0.940, 0.877 and 1.000 in the training cohort, and 0.983 
(0.957–1.000, 95% CI), 0.968, 1.000 and 0.938 in the vali-
dation cohort, which came up to be quite satisfying, and 
the best outcome among training and validation conse-
quences, respectively.

Fig. 4 The ROC curve of LR algorithm



Page 10 of 13Cui et al. Journal of Orthopaedic Surgery and Research          (2023) 18:375 

Fi
g.

 5
 T

he
 R

O
C

 c
ur

ve
 o

f S
VM

 a
lg

or
ith

m



Page 11 of 13Cui et al. Journal of Orthopaedic Surgery and Research          (2023) 18:375  

Abbreviations
ML  Machine learning
MRI  Magnetic resonance imaging
KOA  Knee osteoarthritis
BMI  Body mass index
ICC  Intraclass correlation coefficient
LASSO  Least absolute shrinkage and selection operator
LR  Logistic regression
KNN  K-nearest neighbour
SVM  Support vector machine
ROC  Receiver operating characteristic
AUC   Area under curve
CI  Confidence interval
CR  Computed radiography
BMD  Bone mineral density
VOI  Volume of interest
ROI  Regions of interest
ICC  Interclass correlation coefficient
IBSI  Imaging biomarker standardisation initiative
LASSO  Least absolute shrinkage and selection operator
LR  Logistic regression
KNN  K-nearest neighbour
SVM  Support vector machine
WORMS  Whole-organ MRI score

MOAKS  MRI osteoarthritis knee score
DICOM  Digital imaging and communications in medicine

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s13018- 023- 03837-y.

Additional file 1: Fig. S1. Lasso algorithm on features select.

Acknowledgements
We hereby appreciate the support for this study provided in part by Huiying 
Medical Technology Co. Ltd., Beijing, China. Our platform and resources could 
be shared for reasonable causes.

Author contributions
FJ, CTR and LRL designed the study. FJ and LRL completed the collection of 
images and the delineation of ROIs-VOIs. CTR, LRL, JY and FJ participated in 
the analysis of the data and contributed to the interpretation of results. CTR 
composed the manuscript. CJY provided guidance on the design of the study 
and revised the article. FJ and CJY are mainly responsible for this project. All 
authors read and approved the final manuscript.

Fig. 6 The ROC curve of the Clnc model

https://doi.org/10.1186/s13018-023-03837-y
https://doi.org/10.1186/s13018-023-03837-y


Page 12 of 13Cui et al. Journal of Orthopaedic Surgery and Research          (2023) 18:375 

Funding
This study was funded by: National Key Research and Development Program 
of China (Grant No. 2020YFC2004900), Youth Project of National Natural Sci-
ence Foundation of China (Grant No. 82102585), and Military Medical Science 
and Technology Youth Training Project (Grant No. 21QNPY110).

Declarations

Ethics approval and consent to participate
This retrospective study was approved by Ethics Committee of Chinese PLA 
General Hospital (Approval No. S2021-094–01), and is in accordance with 
the principles of the Declaration of Helsinki and current ethics standards. 
All patients signed written informed consents, and their data and personal 
information were anonymised prior to analysis.

Consent for publication
Informed consent was acquired from every individual subject included in the 
study, and the data were all anonymised.

Competing interests
The authors declare no competing interests.

Received: 28 January 2023   Accepted: 6 May 2023

References
 1. Bedson J, Croft PR. The discordance between clinical and radiographic 

knee osteoarthritis: a systematic search and summary of the litera-
ture. BMC Musculoskelet Disord. 2008;9:116. https:// doi. org/ 10. 1186/ 
1471- 2474-9- 116.

 2. Sharma L. Osteoarthritis of the Knee. N Engl J Med. 2021;384:51–9. 
https:// doi. org/ 10. 1056/ NEJMc p1903 768.

 3. Menashe L, Hirko K, Losina E, et al. The diagnostic performance of MRI 
in osteoarthritis: a systematic review and meta-analysis. Osteoarthrit 
Cartilage. 2012;20:13–21. https:// doi. org/ 10. 1016/j. joca. 2011. 10. 003.

 4. Culvenor AG, Oiestad BE, Hart HF, et al. Prevalence of knee osteoarthri-
tis features on magnetic resonance imaging in asymptomatic unin-
jured adults: a systematic review and meta-analysis. Br J Sports Med. 
2019;53:1268–78. https:// doi. org/ 10. 1136/ bjspo rts- 2018- 099257.

 5. Hayashi D, Roemer FW, Guermazi A. Imaging for osteoarthritis. Ann Phys 
Rehabil Med. 2016;59:161–9. https:// doi. org/ 10. 1016/j. rehab. 2015. 12. 003.

 6. Roemer FW, Eckstein F, Hayashi D, et al. The role of imaging in osteoar-
thritis. Best Pract Res Clin Rheumatol. 2014;28:31–60. https:// doi. org/ 10. 
1016/j. berh. 2014. 02. 002.

 7. Roemer FW, Kwoh CK, Hannon MJ, et al. What comes first? Multitissue 
involvement leading to radiographic osteoarthritis: magnetic resonance 
imaging-based trajectory analysis over four years in the osteoarthritis 
initiative. Arthritis Rheumatol. 2015;67:2085–96. https:// doi. org/ 10. 1002/ 
art. 39176.

 8. Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures. 
They Data Radiol. 2016;278:563–77. https:// doi. org/ 10. 1148/ radiol. 20151 
51169.

 9. Machine Learning and Data Mining in Pattern Recognition. Journal 
Name. 2017 http://doi.org/https:// doi. org/ 10. 1007/ 978-3- 319- 62416-7.

 10. Zhong J, Hu Y, Si L, et al. A systematic review of radiomics in osteo-
sarcoma: utilizing radiomics quality score as a tool promoting clini-
cal translation. Eur Radiol. 2021;31:1526–35. https:// doi. org/ 10. 1007/ 
s00330- 020- 07221-w.

 11. Pan J, Zhang K, Le H, et al. Radiomics nomograms based on non-
enhanced mri and clinical risk factors for the differentiation of chondro-
sarcoma from enchondroma. J Magn Reson Imaging. 2021;54:1314–23. 
https:// doi. org/ 10. 1002/ jmri. 27690.

 12. Bitencourt AGV, Gibbs P, Rossi Saccarelli C, et al. MRI-based machine 
learning radiomics can predict HER2 expression level and pathologic 
response after neoadjuvant therapy in HER2 overexpressing breast can-
cer. EBioMedicine. 2020;61:103042. https:// doi. org/ 10. 1016/j. ebiom. 2020. 
103042.

 13. Bayramoglu N, Nieminen MT, Saarakkala S. Machine learning based 
texture analysis of patella from X-rays for detecting patellofemoral osteo-
arthritis. Int J Med Inform. 2022;157:104627. https:// doi. org/ 10. 1016/j. 
ijmed inf. 2021. 104627.

 14. Tiulpin A, Thevenot J, Rahtu E, et al. Automatic knee osteoarthritis diag-
nosis from plain radiographs: a deep learning-based approach. Sci Rep. 
2018;8:1727. https:// doi. org/ 10. 1038/ s41598- 018- 20132-7.

 15. Mahum R, Rehman SU, Meraj T, et al. A novel hybrid approach based on 
deep CNN features to detect knee osteoarthritis. Sensors (Basel Switzer-
land). 2021. https:// doi. org/ 10. 3390/ s2118 6189.

 16. Lee LS, Chan PK, Wen C, et al. Artificial intelligence in diagnosis of knee 
osteoarthritis and prediction of arthroplasty outcomes: a review. Arthro-
plasty. 2022;4:16. https:// doi. org/ 10. 1186/ s42836- 022- 00118-7.

 17. Suresha S, Kidziński L, Halilaj E, et al. Automated staging of knee osteoar-
thritis severity using deep neural networks. Osteoarthrit Cartilage. 2018. 
https:// doi. org/ 10. 1016/j. joca. 2018. 02. 845.

 18. Rastegar S, Vaziri M, Qasempour Y, et al. Radiomics for classification of 
bone mineral loss: a machine learning study. Diagn Interv Imaging. 
2020;101:599–610. https:// doi. org/ 10. 1016/j. diii. 2020. 01. 008.

 19. Karim MR, Jiao J, Dohmen T, et al. deepkneeexplainer: explainable knee 
osteoarthritis diagnosis from radiographs and magnetic resonance imag-
ing. IEEE Access. 2021;9:39757–80. https:// doi. org/ 10. 1109/ access. 2021. 
30624 93.

 20. Väärälä A, Casula V, Peuna A, et al. Predicting osteoarthritis onset and 
progression with 3D texture analysis of cartilage MRI DESS: 6-Year data 
from osteoarthritis initiative. J Orthop Res. 2022;40:2597–608. https:// doi. 
org/ 10. 1002/ jor. 25293.

 21. Joseph GB, Baum T, Carballido-Gamio J, et al. Texture analysis of cartilage 
T2 maps: individuals with risk factors for OA have higher and more 
heterogeneous knee cartilage MR T2 compared to normal controls–data 
from the osteoarthritis initiative. Arthritis Res Ther. 2011;13:R153. https:// 
doi. org/ 10. 1186/ ar3469.

 22. Nunes BAA, Flament I, Shah R, et al. MRI-based multi-task deep learning 
for cartilage lesion severity staging in knee osteoarthritis. Osteoarthrit 
Cartilage. 2019;27:S398–9. https:// doi. org/ 10. 1016/j. joca. 2019. 02. 399.

 23. Pedoia V, Norman B, Mehany SN, et al. 3D convolutional neural networks 
for detection and severity staging of meniscus and PFJ cartilage mor-
phological degenerative changes in osteoarthritis and anterior cruciate 
ligament subjects. J Magn Resonan Imag JMRI. 2019;49:400–10. https:// 
doi. org/ 10. 1002/ jmri. 26246.

 24. MacKay JW, Kapoor G, Driban JB, et al. Association of subchondral 
bone texture on magnetic resonance imaging with radiographic knee 
osteoarthritis progression: data from the Osteoarthritis Initiative Bone 
Ancillary Study. Eur Radiol. 2018;28:4687–95. https:// doi. org/ 10. 1007/ 
s00330- 018- 5444-9.

 25. Xue Z, Wang L, Sun Q, et al. Radiomics analysis using MR imaging of 
subchondral bone for identification of knee osteoarthritis. J Orthop Surg 
Res. 2022;17:414. https:// doi. org/ 10. 1186/ s13018- 022- 03314-y.

 26. Hirvasniemi J, Klein S, Bierma-Zeinstra S, et al. A machine learning 
approach to distinguish between knees without and with osteoar-
thritis using MRI-based radiomic features from tibial bone. Eur Radiol. 
2021;31:8513–21. https:// doi. org/ 10. 1007/ s00330- 021- 07951-5.

 27. Yu K, Ying J, Zhao T, et al. Prediction model for knee osteoarthritis using 
magnetic resonance-based radiomic features from the infrapatellar fat 
pad: data from the osteoarthritis initiative. Quant Imaging Med Surg. 
2023;13:352–69.

 28. Ruhdorfer A, Haniel F, Petersohn T, et al. Between-group differences in 
infra-patellar fat pad size and signal in symptomatic and radiographic 
progression of knee osteoarthritis vs non-progressive controls and 
healthy knees - data from the FNIH Biomarkers Consortium Study and the 
Osteoarthritis Initiative. Osteoarthrit Cartilage. 2017;25:1114–21. https:// 
doi. org/ 10. 1016/j. joca. 2017. 02. 789.

 29. Li J, Fu S, Gong Z, et al. MRI-based texture analysis of infrapatellar fat pad 
to predict knee osteoarthritis incidence. Radiology. 2022;304:611–21. 
https:// doi. org/ 10. 1148/ radiol. 212009.

 30. Guidelines for the diagnosis and treatment of osteoarthritis(2018 edition). 
Chin J Ortho. 2018; 38:705–715. https:// doi. org/ 10. 3760/ cma.j. issn. 0253- 
2352. 2018. 12. 001.

 31. Limkin EJ, Sun R, Dercle L, et al. Promises and challenges for the imple-
mentation of computational medical imaging (radiomics) in oncology. 
Ann Oncol. 2017;28:1191–206. https:// doi. org/ 10. 1093/ annonc/ mdx034.

https://doi.org/10.1186/1471-2474-9-116
https://doi.org/10.1186/1471-2474-9-116
https://doi.org/10.1056/NEJMcp1903768
https://doi.org/10.1016/j.joca.2011.10.003
https://doi.org/10.1136/bjsports-2018-099257
https://doi.org/10.1016/j.rehab.2015.12.003
https://doi.org/10.1016/j.berh.2014.02.002
https://doi.org/10.1016/j.berh.2014.02.002
https://doi.org/10.1002/art.39176
https://doi.org/10.1002/art.39176
https://doi.org/10.1148/radiol.2015151169
https://doi.org/10.1148/radiol.2015151169
https://doi.org/10.1007/978-3-319-62416-7
https://doi.org/10.1007/s00330-020-07221-w
https://doi.org/10.1007/s00330-020-07221-w
https://doi.org/10.1002/jmri.27690
https://doi.org/10.1016/j.ebiom.2020.103042
https://doi.org/10.1016/j.ebiom.2020.103042
https://doi.org/10.1016/j.ijmedinf.2021.104627
https://doi.org/10.1016/j.ijmedinf.2021.104627
https://doi.org/10.1038/s41598-018-20132-7
https://doi.org/10.3390/s21186189
https://doi.org/10.1186/s42836-022-00118-7
https://doi.org/10.1016/j.joca.2018.02.845
https://doi.org/10.1016/j.diii.2020.01.008
https://doi.org/10.1109/access.2021.3062493
https://doi.org/10.1109/access.2021.3062493
https://doi.org/10.1002/jor.25293
https://doi.org/10.1002/jor.25293
https://doi.org/10.1186/ar3469
https://doi.org/10.1186/ar3469
https://doi.org/10.1016/j.joca.2019.02.399
https://doi.org/10.1002/jmri.26246
https://doi.org/10.1002/jmri.26246
https://doi.org/10.1007/s00330-018-5444-9
https://doi.org/10.1007/s00330-018-5444-9
https://doi.org/10.1186/s13018-022-03314-y
https://doi.org/10.1007/s00330-021-07951-5
https://doi.org/10.1016/j.joca.2017.02.789
https://doi.org/10.1016/j.joca.2017.02.789
https://doi.org/10.1148/radiol.212009
https://doi.org/10.3760/cma.j.issn.0253-2352.2018.12.001
https://doi.org/10.3760/cma.j.issn.0253-2352.2018.12.001
https://doi.org/10.1093/annonc/mdx034


Page 13 of 13Cui et al. Journal of Orthopaedic Surgery and Research          (2023) 18:375  

 32. Zhu Y, Mohamed ASR, Lai SY, et al. Imaging-genomic study of head 
and neck squamous cell carcinoma: associations between radiomic 
phenotypes and genomic mechanisms via integration of the cancer 
genome atlas and the cancer imaging archive. JCO Clin Cancer Informat. 
2019;3:1–9. https:// doi. org/ 10. 1200/ cci. 18. 00073.

 33. Rios VE, Parmar C, Liu Y, et al. Somatic mutations drive distinct imaging 
phenotypes in lung cancer. Cancer Res. 2017;77:3922–30. https:// doi. org/ 
10. 1158/ 0008- 5472. Can- 17- 0122.

 34. Mathis T, Jardel P, Loria O, et al. New concepts in the diagnosis and man-
agement of choroidal metastases. Prog Retin Eye Res. 2019;68:144–76. 
https:// doi. org/ 10. 1016/j. prete yeres. 2018. 09. 003.

 35. Yang J, Ji Q, Ni M, et al. Automatic assessment of knee osteoarthritis 
severity in portable devices based on deep learning. J Orthop Surg Res. 
2022;17:540. https:// doi. org/ 10. 1186/ s13018- 022- 03429-2.

 36. Sakellariou G, Conaghan PG, Zhang W, et al. EULAR recommendations 
for the use of imaging in the clinical management of peripheral joint 
osteoarthritis. Ann Rheum Dis. 2017;76:1484–94. https:// doi. org/ 10. 1136/ 
annrh eumdis- 2016- 210815.

 37. Peterfy CG, Guermazi A, Zaim S, et al. Whole-organ magnetic resonance 
imaging score (WORMS) of the knee in osteoarthritis. Osteoarthrit Carti-
lage. 2004;12:177–90. https:// doi. org/ 10. 1016/j. joca. 2003. 11. 003.

 38. Hunter DJ, Guermazi A, Lo GH, et al. Evolution of semi-quantitative whole 
joint assessment of knee OA: MOAKS (MRI Osteoarthritis Knee Score). 
Osteoarthrit Cartilage. 2011;19:990–1002. https:// doi. org/ 10. 1016/j. joca. 
2011. 05. 004.

 39. Nichols JA, Herbert Chan H, W. and Baker M. A. B. Machine learning: 
applications of artificial intelligence to imaging and diagnosis. Biophys 
Rev. 2019;11:111–8. https:// doi. org/ 10. 1007/ s12551- 018- 0449-9.

 40. Fontana MA, Lyman S, Sarker GK, et al. Can Machine learning algorithms 
predict which patients will achieve minimally clinically important differ-
ences from total joint arthroplasty? Clin Orthop Relat Res. 2019;477:1267–
79. https:// doi. org/ 10. 1097/ corr. 00000 00000 000687.

 41. Li H, Jiao J, Zhang S, et al. Construction and comparison of predictive 
models for length of stay after total knee arthroplasty: regression model 
and machine learning analysis based on 1,826 cases in a single Singapore 
Center. J Knee Surg. 2022;35:7–14. https:// doi. org/ 10. 1055/s- 0040- 17105 
73.

 42. Price WN. Big data and black-box medical algorithms. Sci Transl Med. 
2018. https:// doi. org/ 10. 1126/ scitr anslm ed. aao53 33.

 43. Jazieh K, Khorrami M, Saad A, et al. Novel imaging biomarkers predict 
outcomes in stage III unresectable non-small cell lung cancer treated 
with chemoradiation and durvalumab. J Immunother Cancer. 2022. 
https:// doi. org/ 10. 1136/ jitc- 2021- 003778.

 44. Li W, Feng J, Zhu D, et al. Nomogram model based on radiomics 
signatures and age to assist in the diagnosis of knee osteoarthritis. Exp 
Gerontol. 2023;171:112031. https:// doi. org/ 10. 1016/j. exger. 2022. 112031.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1200/cci.18.00073
https://doi.org/10.1158/0008-5472.Can-17-0122
https://doi.org/10.1158/0008-5472.Can-17-0122
https://doi.org/10.1016/j.preteyeres.2018.09.003
https://doi.org/10.1186/s13018-022-03429-2
https://doi.org/10.1136/annrheumdis-2016-210815
https://doi.org/10.1136/annrheumdis-2016-210815
https://doi.org/10.1016/j.joca.2003.11.003
https://doi.org/10.1016/j.joca.2011.05.004
https://doi.org/10.1016/j.joca.2011.05.004
https://doi.org/10.1007/s12551-018-0449-9
https://doi.org/10.1097/corr.0000000000000687
https://doi.org/10.1055/s-0040-1710573
https://doi.org/10.1055/s-0040-1710573
https://doi.org/10.1126/scitranslmed.aao5333
https://doi.org/10.1136/jitc-2021-003778
https://doi.org/10.1016/j.exger.2022.112031

	Development of machine learning models aiming at knee osteoarthritis diagnosing: an MRI radiomics analysis
	Abstract 
	Background 
	Methods 
	Results 
	Conclusion 

	Introduction
	Materials and methods
	Patients
	Image data acquisition
	Image segmentation
	Feature extraction
	Feature selection
	Model construction
	Statistical analysis

	Results
	Feature extraction and feature selection
	Performance of the diagnosis models in predicting the KOA

	Discussion
	Conclusion
	Anchor 21
	Acknowledgements
	References


