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Abstract 

Background  Numerous studies have investigated anatomic factors for anterior cruciate ligament (ACL) injuries, such 
as posterior tibial slope (PTS) and notch width index (NWI). However, anterior tibial spine fracture (ATSF) as a specific 
pattern of ACL injury, a bony avulsion of the ACL from its insertion on the intercondylar spine of the tibia, has rarely 
been explored for its anatomical risk factors. Identifying anatomic parameters of the knee associated with ATSF is 
important for understanding injury mechanisms and prevention.

Methods  Patients who underwent surgery for ATSF between January 2010 and December 2021 were retrospectively 
reviewed, and 38 patients were included in the study group. Thirty-eight patients who suffered from isolated menis-
cal tear without other pathologic findings were matched in a 1:1 fashion by age, sex and BMI to the study group. The 
lateral posterior tibial slope (LPTS), medial posterior tibial slope (MPTS), medial tibial depth, lateral tibial height, lateral 
femoral condyle ratio (LFCR) and NWI were measured and compared between the ATSF and control groups. Binary 
logistic regressions identified independent predictors of ATSF. Receiver operator characteristic (ROC) curves were 
performed to compare the diagnostic performance and determine the cutoff values of associated parameters.

Results  The LPTS, LFCR and MPTS were significantly larger in the knees in the ATSF group than in the control group 
(P = 0.001, P = 0.012 and P = 0.005, respectively). The NWI was significantly smaller in the knees in the ATSF group than 
in the control group (P = 0.005). According to the results of logistic regression analysis, the LPTS, LFCR and NWI were 
independently associated with ATSF. The LPTS was the strongest predictor variable, and the ROC analysis revealed 
63.2% sensitivity and 76.3% specificity (area under the curve, 0.731; 95% CI 0.619–0.844) for values above 6.9.

Conclusion  The LPTS, LFCR and NWI were found to be associated with the ATSF; in particular, LPTS could provide the 
most accurate predictive performance. The findings of this study may aid clinicians in identifying people at risk for 
ATSF and taking individualized preventive measures. However, further investigation regarding the pattern and biome-
chanical mechanisms of this injury is required.
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Introduction
Anterior tibial spine fractures (ATSFs) or tibial eminence 
fractures are avulsion fractures of the anterior cruciate 
ligament (ACL) from its insertion on the tibial inter-
condylar eminence. ATSFs are rare, with an incidence 
between 3.0 and 3.5 per 100,000 individuals in the gen-
eral population [1, 2]. These fractures commonly occur 
in children and adolescents, predominantly between the 
ages of 8–14 [3–5]. However, the recent literature sug-
gested that the prevalence of ATSFs in adults is higher 
than previously reported [6, 7]. The etiology of frac-
tures is various; for pediatric patients, it may be due in 
part to skeletal immaturity, weak knee muscle tissue and 
increased ligament elasticity, while for adults, it is mostly 
due to traffic accidents. The most typical mechanism of 
injury is knee hyperextension with a valgus or rotational 
force [8], often resulting from a fall from a bicycle. But 
these fractures are increasingly common in noncontact 
injuries in sports, such as skiing and soccer [9].

According to the Meyers and McKeever classification 
system [10], ATSFs can be classified into 4 types. Type I 
injury is a minimally displaced fragment. Type II injury 
involves superior displacement of the anterior bony frag-
ment, while type III and IV injuries involve complete 
separation of the fragment from the tibia. Type IV injury 
includes comminution of a displaced avulsion fracture. 
The different treatment options for ATSFs are full of hot 
debate, but there is a paucity of literature on the anatomi-
cal risk factors for these fractures.

Samora et  al. [11] included 25 pediatric patients to 
evaluate risk factors for ATSF and found no significant 
differences in posterior tibial slope (PTS) and notch 
width index (NWI) compared to controls. A previous 
study by Messner et  al. [12] explored the relationship 
between posterior tibial slope (PTS) and pediatric ATSFs. 
They found that only male patients undergoing surgical 
fixation of ATSF had an increased PTS compared with 
controls. However, their study population was pediatric 
patients, and their measurement of PTS was performed 
by plain radiographs, limiting their ability to distinguish 
the subtle differences between the medial and lateral 
compartments. In addition to PTS, we want to further 
explore morphological risk factors for ATSFs of the tibial 
plateau and femoral condyle. Various osseous morpho-
logic risk factors associated with ACL injuries have been 
identified in the literature, such as shallower medial tibial 
depth [13], increased lateral tibial plateau slope [14, 15] 
and intercondylar notch stenosis [16]. Therefore, the 
purpose of this study was to determine which anatomic 
parameters are independently associated with ATSF in 
adults (1) and the diagnostic values of the individual ana-
tomic parameters (2). It was hypothesized that patients 

with ATSF would exhibit elevated PTS compared to 
uninjured controls on MRI measurements.

Methods
Patients and study design
Before the research was started, this retrospective 
comparative study received institutional review board 
approval. Patients diagnosed with ATSF from Janu-
ary 2010 to December 2021 at our hospital were identi-
fied according to the hospital Electronic Medical Record 
System. The requirement for written informed consent 
was waived since this was a retrospective study, it could 
not cause any adverse effects for included patients, and 
the patient data were reported anonymously. A total of 
173 patients who were diagnosed with ATSF from 2010 
to 2021 were screened for eligibility by medical records 
(Fig.  1). Patients were excluded from the study group if 
they met one of the following criteria: (1) age < 18 years 
(because of the small number of patients), (2) concomi-
tant ligamentous injury, (3) combined fractures of the 
patella or fractures that have an impact on measurements 
of the femur and tibia, (4) patellofemoral dysplasia/insta-
bility, (5) prior history of knee surgery on the affected 
limb, (6) osteoarthritis Outterbridge > Grade II, (7) sig-
nificant osteoporosis. The included patients with ATSF 
were classified as Meyers-McKeever on radiographs or 
MRI [17]. During the same period, A total of 38 age-, 
sex- and BMI–matched patients who suffered isolated 
meniscus injuries were selected as the control group. Par-
ticipants had any pathological condition that could affect 
the anatomical morphology of the knee joint, such as a 
discoid meniscus, were excluded from the control group. 
Participants with previous surgery or fractures in the 
lower extremity were also excluded.

Data extraction
Patient characteristics, including age at the time of 
surgery, sex and BMI, were obtained from the medi-
cal records. To ensure the accuracy of the results, all 
the measurements were performed using good-quality 
MRI before surgical intervention. MRI was performed 
using a 1.5-T MR scanner (Magnetom Avanto, Sie-
mens AG, Germany) with an imaging protocol com-
posed of T1-weighted turbo spin echo (T1W-TSE) and 
T2-weighted fat-suppressed turbo spin echo (T2W-
TSE-FS) sequences. All measurements were performed 
by 2 independent orthopedic surgeons using a blinded 
method and were repeated twice by each reviewer within 
an interval of 1  month to determine intraobserver and 
interobserver reliability. The mean of the 4 measure-
ments was used for the corresponding final results for 
each patient.
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The lateral and medial posterior tibial slopes (LPTS 
and MPTS, respectively) were measured according to the 
method described by Hudek et  al. [18]. First, to deter-
mine the anatomical axis of the tibia, the central sagittal 
slice of the tibia was selected, and 2 circles were placed on 
the proximal tibia. The proximal circle was matched with 
the anterior, posterior and proximal cortical borders, 
while the distal circle was matched with the anterior and 
posterior cortices. The line connecting the centers of the 
two circles was the anatomic axis of the tibia (Fig.  2A). 
The angle between the perpendicular line of the anatomi-
cal axis of the tibia and the tangent line of the lateral and 
medial tibial plateau is the LPTS and MPTS, respectively. 
This method has been reported as the most reproducible 
for measuring lateral tibial slope and is independent of 
the length of proximal tibia [19]. To determine the most 
predictive bony morphological risk factors, the following 

parameters were also measured according to the original 
description: medial tibial depth (MTD) [20], lateral tibial 
height (LTH) [21], notch width index (NWI) [22] and lat-
eral femoral condyle ratio (LFCR) [23, 24] (Fig. 2).

Statistical analysis
The data were checked for normal distribution by the 
Kolmogorov‒Smirnov test. The differences of continu-
ous variables between the two groups were analyzed by 
the Student’s t test or Mann‒Whitney U test according 
to the normality test. Binary logistic regressions were cal-
culated to identify the significant independent predictors 
of ATSF. Receiver operating characteristic (ROC) curves 
and the area under the curve (AUC) were constructed 
to evaluate the diagnostic accuracy of different param-
eters with the cutoffs calculated. The ideal predictive 
cutoff point with the highest sensitivity and specificity 

Fig. 1  The flowchart of patient selection. ACL anterior cruciate ligament, PCL posterior cruciate ligament, MCL medial collateral ligament, LCL lateral 
collateral ligament, MPFL medial patellofemoral ligament
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was determined based on the Youden index. The intra-
class correlation coefficients (ICCs) were calculated to 
determine the intraobserver and interobserver reliability 
and classified as good (≥ 0.75), fair (0.50–0.74) and poor 
(< 0.50). Statistical analyses were performed using SPSS 
software (version 26; IBM). A P value < 0.05 was consid-
ered significant for all analyses.

Results
A total of 38 patients who were diagnosed with ATSFs 
by surgery or MRI and met the inclusion criteria were 
included in the ATSF group. For the control cohort, 
38 age-, sex- and BMI-matched participants with iso-
lated meniscal tear were included to match the cases. 
The mean age of all participants was 33.64 ± 9.07  years 
(33.08 ± 8.53  years for the ATSF group vs. 
34.21 ± 9.67  years for the control group), and the mean 
BMI of all participants was 23.36 ± 3.65 (22.63 ± 3.11 
vs. 24.08 ± 4.04, respectively). There were no significant 

differences between the 2 groups in demographic charac-
teristics (Table 1).

Fig. 2  MRI images measurements performed according to the original description. A The anatomic axis of the tibia is determined as the line 
connecting the centers of 2 circles. B Lateral posterior tibial slope is composed of the vertical line of the anatomic axis of the tibia and the tangent 
to the lateral tibial plateau. C Medial posterior tibial slope is composed of the vertical line of the anatomic axis of the tibia and the tangent to the 
medial tibial plateau. D Medial tibial depth. E Lateral tibial height. F Notch width index. G The long axis of the femoral shaft. H Lateral femoral 
condyle ratio was defined as b/(a + b) × 100%

Table 1  The comparison of the demographic data between the 
ATSF group and control group

Values are presented as n (%) or mean ± SD

ATSF anterior tibial spine fracture, BMI body mass index

ATSF (n = 38) Control (n = 38) P value

Age, year 33.08 ± 8.53 34.21 ± 9.67 0.59

Sex, M/F 15/23 15/23 1.00

BMI 22.63 ± 3.11 24.08 ± 4.04 0.083

Noncontact/con-
tact injury

16/22 – –

Meyers and McKeever classification

 Type I 0 (0.0) – –

 Type II 8 (21.1) – –

 Type III 23 (60.5) – –

 Type IV 7 (18.4) – –
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The MRI measurements are presented in Table 2. The 
intraobserver and interobserver reliabilities of measure-
ments were categorized as good with the minimum ICCs 
of 0.864 and 0.851, respectively (Table  3). There were 
significant differences between the ATSF group and the 
control group regarding the following parameters: LPTS 
(P = 0.001), MPTS (P = 0.005), NWI (P = 0.005) and LFCR 
(P = 0.012). However, no significant differences were 
observed between groups for MTD, LTH, LPTS-MPTS 
and LPTS/MPTS (Fig. 3).

The binary logistic regression results for the LPTS, 
MPTS, NWI and LFCR are shown in Table  4. From 
the table, the LPTS (OR = 1.326, 95% CI = 1.026–
1.713, P = 0.031), NWI (OR = 3.1194E−14, 95% 
CI = 1.2831E−23–7.60E−05, P = 0.005) and LFCR 
(OR = 1.295, 95% CI = 1.063–1.578, P = 0.010) were found 
to be independently associated with ATSF.

The ROC curves were conducted for three significant 
independent predictors for ATSFs to compare their diag-
nostic performance (Fig. 4). The most accurate predictor 
was the LPTS, which had a sensitivity of 63.2% and speci-
ficity of 76.3% for predicting ATSFs at an optimal cutoff 
of 6.9 (Table 5).

Discussion
The most important finding of this study was that LPTS, 
MPTS, NWI and LFCR were significantly different 
between patients with and those without ATSFs. How-
ever, only the LPTS, NWI and LFCR were found to be 
independently associated with ATSFs. The LPTS had 
63.2% sensitivity and 76.3% specificity at a cutoff value of 
6.9, providing the best predictive performance.

There is a paucity of research comparing the injury 
mechanisms of ATSFs and ACL tears. Previous investiga-
tions have shown that the demographic distribution and 
activity associated with ATSFs differ from those of ACL 
tears. Leie et al. demonstrated that skiing accounted for 
56% of ATSFs, followed by soccer (22%) and rugby (16%) 
[25], whereas ACL tears were most prevalent in girls’ 
soccer, followed by boys’ football and basketball [26, 27]. 
These findings suggest that the mechanisms of these two 
injuries are subtly distinct. A biomechanical analysis of 
primate specimens has indicated that the viscoelastic 
properties of bone and ligaments are influenced by the 
rate of loading applied to the specimens [28]. Avulsion 
fractures are more likely to occur in cases with slower 
loading rates, while injuries to the intrasubstance portion 
of the ACL are more likely to be seen in cases with faster 
loading rates. In children and adolescents, discrepancies 
in the degree of tibial eminence ossification can also give 
rise to differences in injury patterns between ligament 
rupture and avulsion fractures.

Numerous studies have reported that increased PTS 
is an independent risk factor for ACL injury [13, 29, 30]. 
Increased PTS has an adverse effect on knee kinemat-
ics and kinetics, exerting more strain on ACL and con-
sequently leading to stretching and tearing of ACL [31]. 
A recent biomechanical study found that increased PTS 
significantly increased tension on the ACL, and even at a 
2.5° increase in PTS angle, knee joint instability and larger 
loading on the medial meniscus were found on the ACL-
deficient knee [32]. Two studies reported the relationship 
between PTS and ATSF in pediatric populations, but they 
neither found a statistically significant association of PTS 
with ATSF when comparing cases with controls [11, 12]. 
But after stratifying by sex, Messner et al. [12] found that 
male patients who undergo surgical fixation of ATSF tend 
to have increased PTS as compared with controls. Dif-
ferences with our current study in imaging modality and 
study populations may account for the unique findings. 

Table 2  Morphological characteristics in ATSF group and control 
group

Values are presented as mean ± SD

ATSF anterior tibial spine fracture, LFCR lateral femoral condyle ratio, LPTS lateral 
posterior tibial slope, LTH lateral tibial height, MPTS medial posterior tibial slope, 
MTD medial tibial depth, NWI notch width index

Bold values indicate statistical significance

ATSF (n = 38) Control (n = 38) P value

LPTS, deg 7.42 ± 2.32 4.97 ± 3.13 0.001
MPTS, deg 5.78 ± 1.94 4.32 ± 2.43 0.005
LTS-MTS, deg 1.64 ± 2.50 0.65 ± 2.95 0.120

LTS/MTS ratio 1.52 ± 1.25 1.57 ± 1.66 0.477

LTH, mm 30.97 ± 6.42 31.32 ± 5.23 0.488

MTD, mm 29.68 ± 5.58 30.37 ± 5.87 0.411

NWI 0.28 ± 0.03 0.30 ± 0.03 0.005
LFCR (%) 64.05 ± 3.15 62.20 ± 3.03 0.012

Table 3  Inter- and intraobserver reliability expressed as ICC

ICC, 2-way mixed effects model, consistency of agreement (95% confidence 
interval)

ICC intraclass correlation coefficient, LFCR lateral femoral condyle ratio, LPTS 
lateral posterior tibial slope, LTH lateral tibial height, MPTS medial posterior tibial 
slope, MTD medial tibial depth, NWI notch width index

Interobserver 
reliability

Intraobserver reliability

Observer 1 Observer 2

LPTS 0.937 (0.879–0.967) 0.961 (0.937–0.976) 0.946 (0.899–0.972)

MPTS 0.924 (0.859–0.960) 0.946 (0.899–0.972) 0.931(0.872–0.964)

NWI 0.851 (0.426–0.941) 0.864 (0.629–0.941) 0.867(0.712–0.930)

LTH 0.932 (0.886–0.958) 0.929 (0.879–0.959) 0.938 (0.873–0.969)

MTD 0.872 (0.637–0.939) 0.904 (0.757–0.960) 0.942 (0.873–9.974)

LFCR 0.898 (0.859–0.929) 0.915 (0.887–0.943) 0.927 (0.895–0.955)
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One of the concerns with their measurements using plain 
radiographs was that it was not easy to discern subtle dif-
ferences between the compartments due to the super-
imposed medial and lateral tibial plateau, limiting their 
ability to analyze medial and lateral PTS, respectively 
[33]. Articular cartilage represents the functional point of 
tibiofemoral articulation, and MRI can accurately assess 
the 3D geometry of the cartilage surface, while plain radi-
ographs cannot [34]. Our current study found that as the 
LPTS increases, for every additional degree, the risk of 
ATSF increases by 32.6%. And according to the results of 
the logistic regression analysis, MPTS was not an inde-
pendent risk factor for ATSF. Although many studies 

have evaluated the effect of medial and lateral PTS on 
ACL injury, there are some conflicting findings, and 
LPTS measured on MRI is the most consistently reported 
risk factor [13, 30, 35, 36]. Our findings are in line with 
previous studies showing that LPTS is a more significant 
risk factor for ACL injury than MPTS [37–39]. Previous 
biomechanical literature also suggested that an increased 
LPTS has a greater impact on anterior tibial translation 

Fig. 3  Box-and-whisker plots showed distribution of the measurement variables between the ATSF group and the control group. ATSF anterior 
tibial spine fracture. *P < 0.05. LFCR lateral femoral condyle ratio, LPTS lateral posterior tibial slope, MPTS medial posterior tibial slope, MTD medial 
tibial depth, LTH lateral tibial height, NWI notch width index

Table 4  Results of multivariate logistic regression

LFCR lateral femoral condyle ratio, LPTS lateral posterior tibial slope, MPTS medial 
posterior tibial slope, NWI notch width index

Bold values indicate statistical significance

OR 95% CI P value

LPTS 1.326 1.026–1.713 0.031
MPTS 1.245 0.942–1.645 0.124

NWI 3.1194E−14 1.2831E−23–7.60E−05 0.005
LFCR (%) 1.295 1.063–1.578 0.010

Fig. 4  Receiver operating characteristic (ROC) analysis for significant 
predictor variables. LFCR lateral femoral condyle ratio, LPTS lateral 
posterior tibial slope, NWI notch width index
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than MPTS, which creates a net internal rotation that 
increases the strain on the ACL [40, 41].

The association between the femoral intercondy-
lar notch shape and dimensions and ACL injury has 
attracted extensive interest. In particular, NWI based 
on MRI measurements has widely been shown to be an 
important risk factor for ACL injury [42, 43]. Kocher 
et  al. [44] evaluated skeletally immature patients with 
ATSF compared to matched ACL injury. They found 
that the ACL group had narrower notch indices than the 
ATSF group (0.230 vs. 0.253; P = 0.020). This may par-
tially explain the different injury patterns of ATSF and 
ACL injury in the skeletally immature knee. Although we 
identified the decreased NWI as an independent risk fac-
tor for ATSF, the logistic regression results suggest that 
the OR value for NWI is too small to further indicate its 
clinical significance. The current study demonstrated that 
the LFCR—a novel anatomical risk factor for ACL inju-
ries, is also correlated with ATSFs. This association may 
arise from the influence of the distal femoral morphology 
on knee kinematics. An enhanced depth of the posterior 
femoral condyle could induce changes in tibiofemoral 
interactions, ultimately leading to modifications in gait 
and loading mechanics, which may increase the suscep-
tibility to ATSFs [45, 46]. Further investigations involving 
additional cohorts and laboratory biomechanical studies 
are warranted to elucidate the distinct mechanisms of 
ACL tears and ATSFs.

Although these anatomic risk factors are largely 
unmodifiable, a growing body of data highlights the role 
of critical anatomical parameters that can help clinicians 
take preventive measures to avoid injuries. Numerous 
studies have identified the morphological risk factors 
for ACL injury of the knee joint. People with a high risk 
of ACL injury can benefit from modifiable interven-
tions, including landing biomechanics, neuromuscular 
training, balance training and improvements in playing 
surfaces and footwear [47]. A meta-analysis performed 
by Huang et al. [48] demonstrated significant protective 
effects of ACL injury prevention programs and reduced 
injury rates by 53%. Currently, although MRI is not rou-
tinely performed for screening, preoperative MRI for 
ATSF patients is necessary to identify other combined 
injuries, such as meniscus and ligament injuries, and is 

cost-effective. Identifying high-risk individuals through 
preoperative MRI allows us to individualize treatment 
and rehabilitation programs to improve postoperative 
outcomes and avoid reinjury, such as refracture and 
ACL injury. For individuals at high risk of ATSFs, such 
as skiers, it is postulated that training athletes to jump, 
land and cut in a biomechanical position and using 
appropriate athletic equipment may potentially dimin-
ish the incidence of ATSFs [9, 49]. Future research will 
also be warranted to determine if more conservative 
rehabilitation programs and return-to-sport protocols 
are necessary for people at high risk of ATSFs.

Limited studies have investigated morphological 
risk factors associated with ATSFs. To the best of our 
knowledge, this is the first study to confirm the relation-
ship between ATSFs and anatomic parameters, includ-
ing LPTS, MPTS, asymmetry of the medial and lateral 
slopes, MTD, LTH, NWI and LFCR. Our results showed 
that the increased LPTS and LFCR and decreased NWI 
are associated with an increased risk of ATSF. However, 
this study has certain limitations. First, due to the small 
number of pediatric patients, we included only adult 
patients, limiting the generalization of our findings to 
pediatric populations. Nevertheless, as the two groups 
exhibit different ATSF mechanisms, forthcoming stud-
ies should consider addressing them separately. Second, 
we screened in the hospital system based on surgical 
records. Patients with ATSF who did not undergo sur-
gery were not included, especially those with Meyers 
and McKeever classification type I fractures. Third, we 
included patients with only meniscal injury in the control 
group. Although this method has been widely adopted by 
previous studies [24, 50, 51], the inclusion of this popula-
tion may introduce some bias.

Conclusion
Increased LPTS and LFCR and decreased NWI are sig-
nificant risk factors for the incidence of ATSF in adults. 
All three parameters provide good predictive perfor-
mance, but LPTS is the strongest predictor. These find-
ings may contribute to the clinician identifying risk 
factors for ATSF and developing related preventive strat-
egies. Future studies with a larger population are needed 

Table 5  Diagnostic performance of different parameters to predict ATSF

AUC​ area under the curve, CI confidence interval, ATSF anterior tibial spine fracture, LFCR lateral femoral condyle ratio, LPTS lateral posterior tibial slope, NWI notch 
width index

AUC (95% CI) P value Sensitivity Specificity Youden index Cutoff value

LPTS 0.731 (0.619–0.844) < 0.001 0.632 0.763 0.395 6.9

NWI 0.686 (0.566–0.805) 0.005 0.763 0.526 0.290 0.30

LFCR (%) 0.681 (0.559–0.804) 0.007 0.711 0.684 0.395 63.04
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to further understand the anatomical risk factors and 
injury mechanisms of ATSF.
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