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Abstract 

Background This study was aimed to identify key ferroptosis-related biomarkers in steroid-induced osteonecrosis of 
the femoral head (SONFH) based on machine learning algorithm.

Methods The SONFH dataset GSE123568 (including 30 SONFH patients and 10 controls) was used in this study. The 
differentially expressed genes (DEGs) were selected between SONFH and control groups, which were subjected to 
WGCNA. Ferroptosis-related genes were downloaded from FerrDb V2, which were then compared with DEGs and 
module genes. Two machine learning algorithms were utilized to identify key ferroptosis-related genes, and the 
underlying mechanisms were analyzed by GSEA. Correlation analysis between key ferroptosis-related genes and 
immune cells was analyzed by Spearman method. The drug–gene relationships were predicted in CTD.

Results Total 2030 DEGs were obtained. WGCNA identified two key modules and obtained 1561 module genes. 
Finally, 43 intersection genes were identified as disease-related ferroptosis-related genes. After LASSO regression and 
RFE-SVM algorithms, 4 intersection genes (AKT1S1, BACH1, MGST1 and SETD1B) were considered as key ferroptosis-
related gene. The 4 genes were correlated with osteoclast differentiation pathway. Twenty immune cells with signifi-
cant differences were obtained between the groups, and the 4 key ferroptosis-related genes were correlated with 
most immune cells. In CTD, 41 drug–gene relationship pairs were finally obtained.

Conclusions The 4 key ferroptosis-related genes, AKT1S1, BACH1, MGST1 and SETD1B, were identified to play a critical 
role in SONFH progression through osteoclast differentiation and immunologic mechanisms. Additionally, all the 4 
genes had good disease prediction effect and could act as biomarkers for the diagnosis and treatment of SONFH.
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Background
Steroid-induced osteonecrosis of the femoral head 
(SONFH) is a devastating disease that usually progresses 
to osteoarthritis of the hip joint and femoral head col-
lapse [1]. The most common symptoms of SONFH are 

movement limitation and severe pain [2]. The male gen-
der and longer symptom duration are the risk factor for 
poor prognosis [3]. The current treatment measures 
for osteonecrosis of the femoral head (ONFH) mainly 
included operative management [4] and conservative 
treatment, such as osteotomy [5], core decompression 
[6] and bone marrow-derived cell therapies [7]. Given 
that the outcomes of ONFH were heterogeneous, there is 
no most approved therapy for ONFH patients. In China, 
there are around 1.5 ×  105–2 ×  105 new SONFH cases 
annually [8]. Thus, it is imperative to discover the novel 
biomarkers for the diagnosis and treatment of SONFH. 
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Although the etiology and pathogenesis of SONFH have 
been extensively studied [9], there is no clear consensus 
on its exact origin.

Ferroptosis is a recently discovered form of iron-
mediated cell death, which causes much attention as 
new regulated necrosis [10]. Ferroptosis is character-
ized by an increased level of lipid peroxidation products 
and reactive oxygen species [11, 12]. The morphological 
characteristics of ferroptosis include the obvious shrink-
age of cell mitochondria, reduction or disappearance 
of mitochondrial crest, but the cell membrane is intact 
with normal nucleus size [13]. Dysregulation of ferrop-
tosis is correlated with a lot of pathological processes, 
such as inflammation-related diseases, neurodegenera-
tive diseases, and cancers [14–16]. Recently, Sun et  al. 
[17] reported that dexamethasone could induce ferropto-
sis through the pathway of P53/SLC7A11/GPX4 in glu-
cocorticoid-induced osteonecrosis of the femoral head. 
Whereas, the study on the roles of ferroptosis in SONFH 
is still scarce.

Presently, this study was aimed to analyze key ferrop-
tosis-related biomarkers in SONFH based on machine 
learning algorithm. The current findings may offer new 
insights on the SONFH pathogenesis, thereby providing 
new strategies for its diagnosis and treatment.

Methods
Data acquisition
The SONFH dataset GSE123568 was downloaded from 
NCBI Gene Expression Omnibus database, which 
included 30 SONFH patients and 10 non-SONFH 
patients as control. The GPL15207 [PrimeView] Affym-
etrix Human Gene Expression Array platform was used 
for gene-chip assays. This dataset was used as analytical 
dataset.

Data preprocessing
For the above gene-chip dataset, the preprocessed, stand-
ardized and log2 transformed probe expression matrix 
were downloaded, and then, the annotation files were 
downloaded. Through one-to-one matching of probe and 
gene symbol, the probe that did not match gene sym-
bol was deleted. For different probes that mapped to the 
same gene, the mean value was taken as the expression 
value of this gene for subsequent analysis.

Differentially expressed gene analysis
Based on the analysis dataset, the classical Bayesian 
method in limma 3.10.3 [18] was used for differentially 
expressed gene (DEGs) analysis of SONFH vs. control. 
The p value was corrected by Benjamini & Hochberg 
algorithm. The differential expression thresholds were set 
as adj.p.value < 0.05 and |logFC (fold change)|< 0.5. After 

obtaining the DEGs, the volcano map and heatmap were 
drawn, respectively, for visual display.

Screening of SONFH correlated module genes
Weighted gene co-expression network analysis 
(WGCNA) is an analysis method to cluster the genes 
with similar expression patterns and then distinguish 
modules by gene expression similarity.  The correlations 
between modules and modules, as well as modules and 
sample traits were calculated, so as to screen modules 
with highly correlated traits. Additionally, the genes in 
the significant module could be analyzed to find the tar-
get genes related to the research.

In order to find out the module genes highly related 
to diseases in the dataset GSE123568, all the genes were 
ranked in the dataset according to the variance from larg-
est to smallest. Then, the genes with the top 25% variance 
(total number:12050) were selected and the disease status 
of the samples was taken as traits for analysis using the R 
package WGCNA1.61 [19].

SONFH‑related ferroptosis‑related gene (FRG) analysis
Firstly, FRGs were retrieved from FerrDb V2 [20]. After 
that, the intersection of DEGs, FRGs, and disease-highly 
associated module genes obtained from WGCNA analy-
sis was used as SONFH-related FRGs for subsequent 
analysis.

Functional enrichment analyses
Based on these disease-related FRGs, the GO 
(Gene Ontology) function [21] and KEGG (Kyoto Ency-
clopedia of Genes and Genomes) pathways [22] were 
analyzed using DAVID [23]. The number of enriched 
genes in each term was set as at least 2. A p < 0.05 was 
considered as the threshold vale. The top 10 GO entries 
and top 20 KEGG pathways were selected for display.

Protein–protein interaction (PPI) network analysis
In order to understand the protein interactions between 
disease-related FRGs, the online database STRING 
11.0 [24] was used to predict and analyze whether there 
was any interaction between gene-encoded proteins. 
PPI score was set as 0.4. Cytoscape 3.4.0 [25] was used 
to construct PPI networks. In addition, CytoNCA [26] 
plug-in 2.1.6 was used to analyze the topological proper-
ties, including “degree,” “betweenness” and “closeness of 
nodes” in the network.

Screening of key FRGs
SONFH-related FRGs (number: 43) screened above were 
further filtered by two machine learning algorithms as 
previously described [27, 28].
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1. The expression values of disease-related FRGs in var-
ious samples were extracted. Then, LASSO algorithm 
was used to screen the feature genes combined with 
sample grouping. The glmnet package 4.2–2 [29] of R 
3.6.1 was used for regression analysis, and the param-
eter was set as nfold = 20.

2. The support vector machine (SVM) algorithm in 
R package "e1071" (version1.7–9) [30] was used to 
sort the disease-related FRGs. The recursive feature 
elimination (RFE) method was used to select the best 
gene from GSE123568 cohort to avoid the overfit-
ting. Briefly, the  importance ranking of each gene 
were achieved, and the error rate and accuracy of 
each iteration combination were obtained. The low-
est error rate was selected as the best combination, 
and the corresponding gene was taken as the feature 
gene.

Finally, the overlapped feature genes screened from 
LASSO regression algorithm and RFE-SVM algorithm 
were obtained as the key FRGs.

Evaluation of diagnostic efficacy of key FRGs
For the key FRGs obtained from the above analyses, the 
expression values of the key genes in the data set were 
extracted, and then, the diagnostic ROC curves of the key 
genes were drawn by combining the sample grouping.

Gene set enrichment analysis (GSEA)
In dataset GSE123568, Pearson correlation coefficients 
between each key FRG and all the other genes were calcu-
lated, respectively, and then, the correlation coefficients 
were sorted from largest to smallest. After obtaining the 
related gene set for each FRG, GSEA based of KEGG 
pathway enrichment was conducted by using R cluster-
Profiler 3.8.1 [31]. Meanwhile, Benjamini & Hochberg 

method was adopted to conduct multiple inspection cor-
rection, and adj.p < 0.05 was regarded as threshold. The 
top 5 KEGG pathways according to the ranking of signifi-
cance were displayed.

Correlation analysis of key FRGs and immunity
Firstly, 28 kinds of immune cells and their correspond-
ing marker genes were obtained from a previous litera-
ture [32]. Further, based on the gene expression matrix 
of marker genes in all samples, ssGSEA algorithm was 
adopted and R package GSVA 1.36.2 [33] was used to 
calculate the enrichment fraction of each immune cell. 
Then, the immune cells with differential infiltration lev-
els between SONFH and control group were analyzed 
by Wilcoxon test. The differentially infiltrating immune 
cells with p < 0.05 were considered to be closely related to 
SONFH.

Then, Spearman method [34] was applied to ana-
lyze the correlation between key FRGs and infiltrating 
immune cells, and the corresponding p value and correla-
tion coefficient cor were obtained.

Targeted drug prediction of key FRGs
The online database CTD [35] was used to search chemi-
cal interactions of the key genes. The drug–gene relation-
ships supported by at least two references were selected. 
Cytoscape 3.4.0 was used for network building.

Results
Differential analysis
According to the cutoff value of adj.p.val < 0.05 and 
|logFC|> 0.5, 1380 up-regulated and 650 down-regu-
lated DEGs between SONFH and control groups were 
selected. The differential volcano and heatmaps are 
shown in Fig. 1A, B.

Fig. 1 A Volcano plot of differentially expressed genes (green for down-regulated genes, red for up-regulated genes, black for insignificant genes). 
B Heatmap of differentially expressed genes (the top blue bars for control samples, red for disease samples)
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Disease‑related gene analysis
In order to observe the overall correlation of all samples 
in the dataset, the samples were clustered and the out-
lier samples were eliminated to ensure the accuracy of 
the analysis. The sample clustering based on gene expres-
sion is shown in Fig. 2A. The SONFH and control sam-
ples were clustered separately, so the samples were not 
eliminated. Then, in order to ensure that the interac-
tion between genes met the scale-free distribution, we 
first determined the soft threshold of the data, as shown 
in Fig. 2B. We selected the optimal power value recom-
mended by the WGCNA package, that was power = 25.

The adjacency among genes was analyzed, and the 
similarity was calculated based on the adjacency. Then, 
the differentiation coefficient among genes was derived, 
and the systematic clustering tree among genes was 
obtained. Then, according to the dynamic tree cutting 
standard, the fewest genes were set to 70 for each gene 
module, obtaining 22 modules. After that, MEDissThres 
was set to 0.2 to combine similar modules analyzed by 
dynamic tree algorithm. Cluster dendrogram of genes 
in SONFH is presented in Fig. 2C. Further, by calculat-
ing the correlation between the feature vector gene of 
each module and the clinical traits, 9 modules closely 
correlated with SONFH were obtained, of which cyan 
module (1425 genes) and grey60 module (136 genes) 

showed the strongest positive and negative correlation 
with the disease traits, respectively (Fig.  2D). There-
fore, these two modules were regarded as the SONFH-
closely related modules. The genes in the modules were 
considered as SONFH-related genes.

Disease‑related FRGs analysis
Based on FerrDb V2 database, total 621 FRGs were 
retrieved, including 264 driver, 9 markers, 238 sup-
pressor and 110 unclassified genes. After removing the 
duplicate genes, 564 FRGs were obtained.

The intersection of DEGs, FRGs, and module genes 
obtained from WGCNA analysis was taken, and 43 
genes were obtained (Fig.  3A), which were considered 
as disease-related FRGs for subsequent analysis.

GO and KEGG pathway analysis showed that the 
43 disease-related FRGs were enriched in 84 GO-BP 
(biological process), 8 GO-CC (cellular component), 
10 GO-MF (molecular  function) terms and 52 path-
ways. The top 10 GO and top 20 pathways are displayed 
in Fig.  3B, C. The disease-related FRGs were closely 
related to inflammation and apoptosis-related func-
tions, as well as TNF signaling pathway, HIF-1 signaling 
pathway, and osteoclast differentiation.

Fig. 2 A Sample clustering of data set. B Scale-free soft threshold distribution. The vertical axis is Scale Free Topology Model Fit (signed R2). The 
higher the square of the correlation coefficient, the closer the network is to the scale-free distribution. The vertical axis of the right figure represents 
the mean value of all gene adjacency functions in the corresponding gene module. C Module clustering tree diagram. Genes are classified into 
modules by hierarchical clustering, with different colors representing different modules. D Correlation analysis result between WGCNA module and 
sample subtype. In each square, the upper number is the correlation coefficient cor and the lower number is the p value. The darker the color, the 
closer the correlation between modules with clinical traits
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Protein interaction network and correlation analysis
The protein interaction pairs of disease-related FRGs 
were analyzed, and 99 interaction pairs were identi-
fied, involving 30 proteins (Fig. 3D). The top ten nodes 
(hub nodes) were ILIB (degree, 15), HMOX1 (degree, 
15), STAT3 (degree, 14), TLR4 (degree, 14), MAPK3 
(degree, 14), PTGS2 (degree, 13), CREB1 (degree, 12), 
PTEN (degree, 12), CYBB (degree, 11), DUSP1 (degree, 
10), and MAPK5 (degree, 10).

Screening of key FRGs
LASSO regression analysis was conducted based on 
the 43 disease-related FRGs, and 6 key feature genes 
(AKT1S1, ARNTL, BACH1, MGST1, SETD1B and 
NNMT) were obtained (Fig.  4A). Additionally, RFE-
SVM algorithm was also used to screen key genes, and 
17 feature genes were obtained, including BACH1, 
AKT1S1, SETD1B, KLF2, RICTOR, MGST1, ACSL1, 
SAT1, LRRFIP1, PTEN, FTH1, RBMS1, PTGS2, TXNIP, 
TMBIM4, NCF2, and DPEP1 (Fig.  4B). Finally, the 

Fig. 3 A Venn diagram for differentially expressed genes (DEGs), ferroptosis-related genes (FRG) and disease-related module genes (DEGs). B and 
C: Top10 GO (B) and pathways (C) enriched by disease-related FRGs. D PPI network constructed by disease-related FRG protein (red represents 
up-regulated gene; green represents down-regulated gene; the darker the color, the larger the multiple of difference; node size represents the 
degree of connectivity)

Fig. 4 A LASSO regression process parameter diagram (on the left, the vertical coordinate is the coefficient of variables, and the horizontal 
coordinate is log (Lambda). With the change of lambda, the coefficient of most variables is finally compressed to 0; the two dotted lines in the right 
figure indicate two special lambda values). B RFE-SVM model accuracy (left) and error rate (right). Ordinate indicates the (RMSE) Root mean square 
error. C Venn diagram for the feature genes obtained by LASSO regression algorithm and RFE-SVM algorithm. D ROC curves of four key FRGs. MCC: 
Matthew’s correlation coefficient

(See figure on next page.)
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Fig. 4 (See legend on previous page.)
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intersection of feature genes obtained by LASSO regres-
sion algorithm and RFE-SVM algorithm was taken, and 
4 intersection genes (AKT1S1, BACH1, MGST1 and 
SETD1B) were considered as key FRGs (Fig. 4C).

According to the method, diagnostic ROC curves of 
the 4 key FRGs were drawn, as shown in Fig.  4D. AUC 
areas were all above 0.85, indicating that the 4 genes had 
good disease prediction effect.

Potential mechanism of key genes explored by GSEA
The KEGG pathways of 4 key FRGs were explored by 
GSEA. Total 47 KEGG pathways were positively associ-
ated with AKT1S1 and 118 were negatively correlated 
with AKT1S1; 145 positively correlated and 34 negatively 
correlated KEGG pathways were obtained by BACH1 
enrichment; MGST1 enrichment resulted in 118 posi-
tive and 16 negative KEGG pathways; 127 positive and 
28 negative KEGG pathways were obtained by SETD1B 
enrichment. Top 5 KEGG pathways of each gene were 
selected for visual display, as shown in Fig. 5. The enrich-
ment results are detailed in Additional file  1: Tables 
S1–S4. The osteoclast differentiation pathway was signifi-
cantly enriched, indicating that this pathway may play a 
key role in SONFH.

Correlation analysis of key FRGs and immunity
The enrichment scores of 28 types of immune cells were 
calculated to compare the differences in immune cell 
infiltration levels between the disease group and the nor-
mal group. As shown in Fig. 6A, there were 20 immune 
cells with differential infiltration levels between the 
groups, such as activated B cell, activated CD8 T cell, 
central memory CD4 T cell, eosinophil, immature den-
dritic cell, and neutrophil. The correlation between dif-
ferential immune cells is shown in Fig.  6B. Type 17  T 
helper cell and CD56 bright natural killer cell were posi-
tively correlated with most types of immune cells.

In order to further understand the correlation between 
the screened biomarkers (4 key FRGs) and differential 
immune cells, the Spearman method was applied, and 
the corresponding p value and correlation coefficient 
cor were obtained. The 4 key FRGs were correlated with 
most immune cells (Fig. 6C).

Targeted drug prediction
According to the threshold value, 41 drug–gene relation-
ship pairs were finally obtained, including 34 drug mol-
ecules, such as phenobarbital, resveratrol, and clofibrate, 
and 4 key FRGs. Specially, carbon tetrachloride, bisphe-
nol A, acetaminophen, benzo(a)pyrene, tetrachlorod-
ibenzodioxin, and titanium dioxide had interactions with 
two genes (Fig. 7).

Discussion
SONFH as a debilitating disease has become a public 
health burden. SONFH is usually asymptomatic; thus, 
the early diagnosis and prevention are imperative for 
SONFH patients. Emerging effects have been made for 
the identification of diagnostic marker for SONFH by 
bioinformatics approach. The study of Zhao et  al. has 
applied WGCNA and CIBERSORT to screen the key 
diagnostic markers underlying the immune-related 
mechanism, such as TYROBP, TLR2 and P2RY13 [34]. 
Ferroptosis is a newly discovered type of cell death, 
which has been found to be implicated in various 
pathophysiological processes, such as infection, inflam-
mation and immunity [36]. However, the diagnostic 
value of FRGs in SONFH has not clarified. Thus, in the 
present study, we attempted to identify the key FRGs 
valuable for the diagnosis and treatment for SONFH.

Our results showed that there were 4 key FRGs: 
AKT1S1, BACH1, MGST1 and SETD1B through 
machine learning algorithm. They were positively cor-
related with the pathway of osteoclast differentiation. 
Additionally, 20 immune cells showed differential infil-
tration levels between SONFH and control groups, and 
the 4 key FRGs were correlated with most immune 
cells. Findings of this study may help to understand the 
pathogenesis of SONFH as well as develop novel diag-
nosis and treatment targets.

AKT1S1 is a substrate of Akt and a component of 
the mTOR complex 1 [37]. It has been reported that 
AKT1S1 can suppress the activity of mTOR complex 1 
[38]. mTOR is a member of mTOR complex 1, and the 
mTOR signaling pathway can regulate many stem cell 
processes, including cell survival, proliferation, and dif-
ferentiation [39]. Recent study revealed that the mTOR 
pathway may mediate the bone homeostasis [40]. Acti-
vation of the mTOR signaling pathway can impair the 
osteogenic/adipogenic lineage differentiation of bone 
marrow mesenchymal stem cells (BMSCs) [41]. Impor-
tantly, involvement of BMSCs in osteoblast lineage 
and bone formation is thought to be a major media-
tor of SONFH [42]. In this study, AKT1S1 was down-
regulated. We speculated that the down-regulation of 
AKT1S1 may increase the activity of mTOR complex 1, 
thereby resulting in SONFH.

All of BACH1, MGST1 and SETD1B were positively 
correlated with osteoclast differentiation. Bone remod-
eling is the result of a balance between osteoblast and 
osteoclast differentiation [43]. Bone remodeling has 
played a key role in the development and severity of oste-
onecrosis of the femoral head [44]. Nevertheless, little 
is known about the underlying molecular pathophysi-
ology. Interestingly, the three key FRGs have not been 
investigated in SONFH to our best knowledge. Thus, we 
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speculated that they may regulate osteoclast differentia-
tion in SONFH.

Recently, more and more studies have suggested that 
infiltration of immune cell is associated with the occur-
rence of SONFH. For example, the activated B cells were 
found to have a higher frequency in SONFH patients 

peripheral blood compared with healthy controls [45]. 
Inhibitory T cells are related to the pathogenesis of non-
traumatic osteonecrosis of the femoral head by regulat-
ing the bone mass balance of the femoral head [46]. In 
the present study, among the 28 immune cells, 20 were 
differential between SONFH and control groups, further 

Fig. 5 KEGG pathway analysis of 4 key FRGs by GSEA enrichment method
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suggesting the critical roles of immune cell infiltration 
in SONFH progression. Importantly, among these 20 
immune cells, activated B cell was included and also had 
a higher infiltration level in SONFH group, being con-
sistent with the report above. Mover, correlation analy-
sis revealed that 4 key FRGs were correlated with most 
immune cells, suggesting that the identified key FRGs 
may play a role in SONFH pathogenesis through immu-
nologic mechanisms.

Finally, we predicted the targeted drugs of the 4 FRGs. 
For instance, titanium dioxide had interactions with 
BACH1 and AKT1S1. Titanium dioxide is a common 
component of orthopedic prosthesis [47]. Acetami-
nophen was predicted to have interactions with BACH1 
and MGST1. Acetaminophen has a central analgesic 
effect and has been used in osteoarthritis [48]. Investigat-
ing the interaction between key gene and targeted drug 
may help the development of medicine for SONFH.

Fig. 6 A The distribution of immune cell infiltration levels between disease and normal groups (*p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001). 
B Correlation diagram of differential immune cells (red sector represents negative correlation, blue sector represents positive correlation, and larger 
sector area represents greater absolute value of correlation coefficient). C Lollipop chart of correlation between 4 key ferroptosis-related genes and 
20 differential immune cells (yellow to green indicates negative to positive correlation coefficients, the larger the circle is, the greater the absolute 
value of correlation coefficients, and the number in the back indicates the significance of p value)
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Conclusions
Four key FRGs, AKT1S1, BACH1, MGST1 and SETD1B, 
were identified to play a critical role in the progression of 
SONFH through osteoclast differentiation and immuno-
logic mechanisms. Additionally, all the 4 genes had good 
disease prediction effect and may act as biomarkers of 
the diagnosis and treatment of SONFH.
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