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Abstract 

The current literature has mainly focused on the biology of tendons and on the characterization of the biological 
properties of tenocytes and tenoblasts. It is still not understood how these cells can work together in homeostatic 
equilibrium. We put forward the concept of the “tendon unit” as a morpho-functional unit that can be influenced by 
a variety of external stimuli such as mechanical stimuli, hormonal influence, or pathological states. We describe how 
this unit can modify itself to respond to such stimuli. We evidence the capability of the tendon unit of healing itself 
through the production of collagen following different mechanical stimuli and hypothesize that restoration of the 
homeostatic balance of the tendon unit should be a therapeutic target.
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Introduction
Most of the recent work on the biology of tendons has 
concentrated on the characterisation of the mechani-
cal, biochemical and biological properties of tenocytes 
and tenoblasts. It still remains unclear how these cells 
interact among themselves and are in homeostatic bal-
ance with the extracellular matrix (ECM) in which they 
are embedded in. Focusing on the interactions that occur 
during mechanical stimuli, under the influence of hor-
mones or growth factors and in pathological states, this 
brief article aim to explain how this can take place [1]. 

Tendons connect muscle to bone and allow transmis-
sion of forces generated by muscle to bone, resulting in 
joint movement. Tendon injuries produce considerable 
morbidity, and the disability that they cause may last for 
several months de- spite what is considered appropriate 
management [2].

Regretfully, the pathophysiology of tendon tissue is still 
poorly understood, and the interactions between the var-
ious cell types present in tendons, and between them and 
the ECM have still not been thoroughly explored. Ten-
dons are multicellular tissue, interposed between bone 
and muscles, allowing joint movement and stabilisation 
[3, 4]. Extensive mechanical loads imposed on tendons 
can lead to acute and chronic injuries [5]. Tendinopathies 
represent major medical problems associated with over-
use, dysmetabolic disorders, inflammation, genetic and 
familial predisposition, and age-related alteration [1, 6–
10]. All these multifactorial agents can contribute to the 
failed healing response typical of tendinopathic lesions 
[11, 12].

Aim
We put forward the concept of a ‘Tendon Unit’ as a meta-
bolic and functional unit of the various cellular compo-
nents of tendons to at least partially explain how changes 
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in different physiological and pathological conditions 
may arise from metabolic or (bio)mechanical disarray of 
such Tendon Unit [13, 14].

Microanatomical features of the tendon unit
Tendons are a multi-unit hierarchical structure com-
posed of collagen molecules, fibrils, and fascicles that run 
parallel to its long axis [15]. Tenoblasts and tenocytes, 
constitute about 90% of the cellular elements of a tendon 
[16–18] (Table  1). The other 10% is composed of chon-
drocytes close to the insertion of the tendon to bone, 
synovial cells of the tendon surface, vascular cells, such 
as endothelial cells, smooth muscle cells of the arterioles 
[3, 19], nerve cells, tendon derived stem cells (TDCS), 
immune cells [20–22]. Tendons are also surrounded 
by cell-produced proteins and polysaccharides: colla-
gen (mostly type I collagen) [19, 23, 24], elastin (1–5%) 
embedded in a proteoglycan (1–5%) and water matrix 
(70–80%) [24]. The ECM acts as a scaffold, defining the 
tissue shape and structure, and as a substrate for cell 
adhesion, growth, and differentiation [25]. Signal trans-
mission of the tendon unit is mediated by the cytoskel-
eton, integrins, g proteins and stretching-activated ion 
channel [26]. The cytoskeleton is composed of micro-
filaments and microtubules and plays a central role in 
mechanotransduction [27, 28]. Integrins are transmem-
brane protein heterodimers composed of two subunits. 
Integrins have three domains: an extracellular matrix 
domain, a single transmembrane domain, and a cytoplas-
mic domain [29], playing a role in the signalling interface 
between the extracellular matrix and the cell [29]. With 
the integrins, the G proteins are another family of mem-
brane proteins involved in mechanotransduction and 
are activated by mechanical forces [29]. In addition to 
the activation of signal proteins, mechanical forces also 
trigger stretch-activated ion channels [30]. Mechanical 
stretching induced  Ca++ signal transmission appears to 
involve actin filaments, as actin polymerization inhibitors 
abolished  Ca++ responses [13] (Fig. 1).

Mechanical load and mechanical transduction 
of the tendon unit
Tendons are exposed to different types of loads during 
normal function [31], and are subjected mainly to cyclical 
tensile loads, often working as elastic tissue to decrease 
the metabolic costs of high-level muscle contraction, 
exhibiting different behaviours in response to different 
forces [31, 32]. The tendon unit can adapt to mechanical 
loading modifying its structure and composition. In par-
ticular, the ECM transmits mechanical loads, and stores 
and dissipates loading-induced elastic energy mediating 
various cellular functions including DNA and protein 
syntheses [33]. The adaptative mechanisms whereby ten-
don units detect mechanical stimuli and modify them-
selves have only been investigated in vitro [34].

To understand this response, it is important to bet-
ter define how tendons detect, respond and transduce 
mechanical stimuli [34]. The changes perceived after 
mechanical loading are transmitted by gap junctions, 
which allow between-cell communications: these permit 
rapid exchange of ions and signalling molecules between 
cells, inducing stimulatory and inhibitory responses to 
tensile loads [26], effecting change in the various cellular 
components of tendons. For example, compressive load-
ing in vitro downregulates SCX, alfa 1 and alfa 2 integrin 
[35]. These proteins are also significantly downregulated 
in  vivo when tendons are loaded. Short duration com-
pressive loads lead to an increase in the production of 
type II collagen, aggrecan and lumican [35], while ten-
sile loads lead to an increase of collagen I and III [36]. 
Hence, modulating both compressive and tensile loads 
on tendons may prevent a deleterious tendon response 
modifying collagen production. This should be probably 
a therapeutic target, but further studies are needed to 
clarify it [37]. Loading can also influence the production 
of ECM protein, causing the release of growth factors, 
such as TGF-b1, bFGF, and PDGF [38]. TGF- b medi-
ates collagen production induced by mechanical loading 
[39], and also modulates ECM turnover by regulating 

Table 1 Main characteristics of tenocytes and tenoblasts

TENOCYTE TENOBLAST

In the middle of the primary fiber bundle In the periphery of the primary fiber bundle

Spindle or stellate shape Round shape cells

Elongated nuclei Large ovoid nuclei

Condensed cromatin, low concentration of pinocynotic vescicles High concentration of pinocynotic vescicles

Golgi and endoplasmic reticulum well developed Golgi and rough endoplasmic reticulum well developed

Many free ribosomes Few lysosomes

Few mitochondria Few mitochondria

Predominant in normal tendon Predominant in young tendon
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the expression and activity of MMPs [21, 40–42]. Finally, 
TGF- b also interacts with growth factors/cytokines to 
regulate ECM homeostasis in various tissues [43]. Hence, 
the tendon unit responds to mechanical forces by altering 
gene expression, protein synthesis, and cell phenotype. 
These early adaptive responses may influence and lead 
to long-term tendon structure modifications and thus 
produce measurable changes in the mechanical proper-
ties of tendons [44]. These modified cellular components 
include the extracellular matrix, cytoskeleton, integrins, 
G proteins, receptor tyrosine kinases (RTKs), mitogen-
activated protein kinases (MAPKs), and stretching-acti-
vated ion channels [25].

Hormones and hormonal disorders
Hormones and hormonal disorders may influence the 
behavior of the tendon unit [10, 45–47].

A central role is played by oestrogens, thyroid hor-
mones, and relaxin. All the pathological states can 
influence the tendon healing process and the collagen 
production.

Sexual hormones
Oestrogens play an important role in the homeostasis of 
the tendon unit in pre-menopausal women, who exhibit 
a lower risk of tendinopathies [48, 49]. Oestrogen levels 
can influence tendon metabolism, morphology and bio-
mechanical properties [50–52]. Postmenopausal oestro-
gen deficiency is linked to the down-regulation of the 
turnover of collagen fibres and a decrease in the elasticity 
in tendon [53]. Low oestrogen levels are associated with 
impaired tendon healing with lower cell proliferation, 

altered metabolism, MMP overexpression, and ECM pro-
tein loss [22, 48, 51, 54]. In in  vitro models, a decrease 
in oestrogen levels downregulated collagen turnover and 
reduced elasticity of tendons [50], and may account for 
the less favourable outcome experienced by women fol-
lowing surgery for Achilles tendinopathy [55].

Thyroid hormones
Thyroid hormones (THs) can influence the tendon unit 
[45, 56]. TH-receptor isoforms are expressed in tendons 
[46, 47, 57]. Moreover, triiodothyronine  (T3) and thyrox-
ine  (T4) contrast apoptosis in healthy tenocytes [46, 58]. 
THs (especially  T3) stimulate cellular proliferation and 
type I collagen formation, the major fibrillar collagen in 
tendons [46, 58], with an additive effect of ascorbic acid 
(AA) on  T3, increasing collagen expression, ECM protein 
secretion, and the expression of COMP (cartilage oligo-
meric matrix protein) and tendon cells proliferation [46, 
58]. In addition, AA can stimulate the proliferation of 
tendon cells [58].

Relaxin
The role of relaxin and how it may influence the ten-
don unit is not completely clear. Relaxin is a member 
of a family of peptide hormones structurally similar to 
insulin, but which diverged from insulin to form a dis-
tinct peptide family based on a two-chain structures 
[59]. Relaxin is antifibrotic and can downregulate fibro-
blast activity, increase collagenase synthesis, and inhibit 
collagen I, which is stimulated by transforming growth 
factor-β (TGFB) [60]. However, the effect of relaxin on 

Fig. 1 The tendon unit
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tendon and ligament healing remains unclear, although it 
appears that relaxin inhibits tendon healing [59].

Glucose metabolism
Diabetes mellitus may be a predisposing factor for ten-
dinopathy [13]. The chronic nature of diabetes demon-
strates the long-term effects of elevated glucose levels 
on tendon cells [13]. Type 2 diabetes mellitus (T2DM) 
negatively impacts tendon homeostasis in the absence of 
acute injury [61, 62]. In general, diabetic patients expe-
rience an augmented incidence of tendon rupture and 
tendinopathy [63], with structural abnormalities includ-
ing calcification [64]. T2DM is a multifactorial pathol-
ogy, and it is difficult to assess the relative contributions 
of each factor to diabetic tendinopathy. Elevated serum 
haemoglobin A1C (HbA1c) levels are strongly associated 
with the development of the tendinopathy [65, 66]. In 
terms of the efficacy of tendinopathy treatments, T2DM 
modifies the response to treatment, with decreased effec-
tiveness [67].

Growth factors
Numerous growth factors are involved in the repair pro-
cesses of the tendon unit [68]. These include BMPs, EGF, 
FGF1, FGF2, IGF-1, IGF-2, PDGF-AA, PDGF-BB, PDGF-
AB, TGF-β, which can influence the tendon unit acting 
separately or in concert with one another. The expression 
of the various growth factors is different in each phase 
of the tendon unit healing process (Fig. 2) [69–72]. The 
repair process is influenced by inflammation [6, 73].

Basic fibroblastic growth factor
bFGF is a single-chain polypeptide of 146 amino acids 
and is a member of the heparin-binding GF family. 
bFGF is angiogenic [74], and has mitogenic effects on 
many mesenchymal cells such as ligament fibroblasts 
[75]. bFGF is involved in wound healing and exhibits a 
stimulatory effect on human rotator cuff tendon cells 
in vitro, though it suppresses collagen synthesis [76].

Bone morphogenetic proteins
BMPs (bone morphogenetic proteins) are a group of 
factors of the TGF-β superfamily that can stimulate for-
mation of bone and stimulate cell mitogenesis and heal-
ing in the tendon unit [77], though their mechanism 
remains unclear [78, 79].

Insulin‑like growth factor
IGF-1 is found in different cell types, including carti-
lage, bone, muscle and tendon cells [80]. During the 
process of tendon healing, IGF-1 seems to stimulate the 
proliferation and migration of the tenoblasts during the 
inflammatory phase [81]. In addition to its mitogenic 
effect, IGF-1 can also stimulate selected components 
of matrix synthesis and its expression, as seen in vitro 
in tenocytes [82]. Moreover, in a rat model of Achil-
les tendon injury, IGF-1 induced tenocyte migration, 
division, matrix expression and accelerated functional 
recovery [83, 84].

Fig. 2 The process of tendon healing goes through three phases. GF is expressed in each phase, promoting the proliferation of cells, ECM and the 
tendon healing process
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Transforming growth factor‑β
Originally known as a tumour transformation factor, it 
is now clear that TGF-β has a wide range of physiologi-
cal effects on the tendon unit [85, 86]. The expression of 
TGF-β seems closely associated with the expression of 
a differentiated phenotype in some different cell lines, 
including mesenchymal precursor cells [87]. The forma-
tion of tendons and ligaments is directly influenced by 
the TGF-β superfamily [88]. TGF-β can stimulate tendon 
cell migration and mitogenesis, but it cannot stimulate 
robust expression of extracellular matrix [87, 89]. TGF-
β, moreover, may control the switching point in the heal-
ing process from normal to pathological [90]. All three 
TGF-β isoforms significantly increase collagen I and 
III production in cultured tendon fibroblasts [91] with 
TGF-β1 inducing scar tissue formation, whereas TGF-β3 
reduces it [92].

Vascular endothelial growth factors
Vascular endothelial growth factors (VEGF) are two 
families of proteins resulting from alternate splicing of 
mRNA from a single, 8 exon, VEGF gene [93]. Probably 
the most important member is VEGF-A, composed of 
two subunits. Other members are placenta growth factor, 
VEGF-B, VEGF-C and VEGF-D [93]. All members of the 
VEGF family stimulate cellular responses by binding to 
tyrosine kinase receptors (the VEGFRs) on the cell sur-
face, causing their activation through transphosphoryla-
tion [93]. In a canine model of tendon injury, researchers 
identified a repair site expressing a message for VEGF, 
suggesting a potential for organizing the angiogenic 
response during the early postoperative phase of tendon 
healing [94, 95].

Neuropeptides and the tendon unit
The role of substance P (SP) on tendon healing has 
recently become apparent [96]. Most studies per-
formed on SP and tendons focus on healing after the 
transection of a tendon [97, 98], but SP may play a role 

in tendinopathy. In addition to its established role in 
peripheral pain, SP has pro-inflammatory effects and 
effects on vasodilation and vascular permeabilization, 
and also reparative effects including angiogenesis and 
cell proliferation of the tendon unit [98] (Table 2).

Future perspectives
Tissue engineering has emerged as a promising 
approach for tendon healing, with the potential to 
regenerate functional tendon tissue and improve 
patient outcomes. Potential future perspectives in tis-
sue engineering for tendon healing include:

1. Advances in biomaterials: Biomaterials play a criti-
cal role in tissue engineering by providing structural 
support and promoting tissue regeneration. New 
biomaterials are being developed with enhanced 
mechanical properties, biocompatibility, and bioac-
tivity, which could improve tendon healing outcomes 
[99].

2. Cellular therapies: Stem cells and other cell-based 
therapies have shown promise in promoting tendon 
healing. Researchers are exploring new cell sources 
and developing new delivery methods to enhance the 
effectiveness of cellular therapies [100, 101].

3. Bioprinting: 3D bioprinting enables the precise place-
ment of cells and biomaterials to produce complex 
tissue structures, making it a promising technology 
for tendon tissue engineering, with new bioprinting 
techniques and materials to optimize tendon regen-
eration [102].

4. Gene therapy: Gene therapy has the potential to 
enhance the healing process by promoting the 
expression of growth factors and other factors 
involved in tendon regeneration. Researchers are 
developing new gene delivery systems to safely and 
effectively deliver therapeutic genes to damaged ten-
don tissue [103].

Table 2 The main modification of tendon unit according to physiological and pathological states

EXTERNAL STIMULI CHANGES IN THE TENDON UNIT

Mechanical force ECM modifier/ TGF B → augmented collagen production

Tyrode hormones T3: stimulate cellular proliferation, and type I collagen formation, ECM protein secretion, in pathologi-
cal patterns inhibit tendon healing

Oestrogens Low: altered ECM metabolism, overexposes MMP and reduce collagen production and tendon healing

Relaxin Antifibrotic, downregulate fibroblast activity, increase collagenase synthesis, and inhibit collagen I, 
inhibits tendon healing

Diabetes Lowers collagen production, inhibits tendon healing

Neuropeptides (P substance) Accelerates tendon healing, and induces greats angiogenesis
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Conclusions
The tendon unit ensures biosynthesis and the main-
tenance of the tendon structure. Starting from a 
mechanical or biochemical stimulus, a series of changes 
occur in the ECM and the cellular part of the tendon 
unit. These affect the production of collagen, proteins 
etc., influencing the tendon healing with a feedback 
mechanism. Further studies are needed to clarify the 
molecular mechanism involved in the process of ten-
don healing and homeostasis. We have concentrated 
on tenocytes, but tendons are ’organs’ with a complex 
anatomical structure and even more complex physi-
ology. Tissue engineering just using one cell type will 
have some success, but it is possible that the future 
will be co-culture of the various cellular components 
of tendons, coupled with appropriate biochemical and 
mechanical stimuli, keeping in mind that the tendon 
unit also contains vascular and neural components.
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