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Abstract 

Introduction The weight-adjusted waist circumference index (WWI) is a novel obesity evaluation indicator that 
appears to be superior to body mass index (BMI) and waist circumference (WC) in evaluating muscle and fat mass. 
The purpose of this study was to investigate the association between WWI and fractures among adults.

Methods In this cross-sectional study, multivariate logistic regression and smoothed curve fitting were used to inves-
tigate linear and nonlinear associations between WWI and fractures, based on data from 28,679 adult participants in 
the National Health and Nutrition Examination Survey (NHANES) from 1999 to 2018.

Results After adjusting for all covariates, the prevalence of hip/wrist/spine fractures among all participants was 
1.09%, 8.87%, and 1.97%, respectively. A 1-unit increase in WWI was associated with a 5% increase in the odds of hip 
fractures [1.05 (1.01, 1.10)], and a 9% increase in the odds of spine fractures [1.09 (1.06, 1.13)], but not with the preva-
lence of wrist fractures [0.97 (0.94, 1.06)].

Conclusions Higher WWI was associated with an increased prevalence of hip fracture and spine fracture, but not 
wrist fracture.
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Introduction
Osteoporosis is a systemic skeletal disease marked by low 
bone mass and architectural degeneration, accompanied 
by increased bone fragility and fracture risk [1, 2]. In 
the United States alone, osteoporotic fractures currently 
account for more than 500,000 hospitalizations [3], and 
this number is increasing as the population ages [4, 5]. 
Therefore, early prevention of fractures and exploration 
of risk factors is critical [6], and advances in population-
based studies have led to more accurate assessments of 

fracture risk and expanded the range of options available 
for fracture prevention [7, 8].

Obesity is a complex metabolic disease [9]. The preva-
lence of obesity has increased dramatically over the past 
few decades and is now at an unprecedented level: nearly 
one-third of the global population is obese [10, 11]. 
Although it has long been known that obesity may pro-
tect against osteoporosis and fractures [12–14], a signifi-
cant amount of research has emerged in recent years that 
refutes this theory [15–19]. Body mass index (BMI) and 
waist circumference (WC), two commonly used obesity 
markers, fail to differentiate between muscle mass and 
fat mass [20], while body composition and body fat dis-
tribution have been proposed to more accurately reflect 
adverse metabolic characteristics [21, 22].

The weight-adjusted waist circumference index (WWI), 
originally proposed by Park et al. [23], was shown to be 
associated with age-related changes in body composi-
tion, such as loss of muscle mass and retention or gain 
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of fat mass [24]. In addition, several studies have shown 
a significant positive association between WWI and car-
diovascular disease [25–27], chronic kidney disease [28], 
and all-cause mortality [29].

However, no studies have assessed the association 
between WWI and fractures. As a result, we performed 
a cross-sectional study to investigate the relation-
ship between WWI and fractures using data from the 
National Health and Nutrition Examination Survey 
(NHANES) 1999–2018.

Methods
Study population
The NHANES, a program of the National Center for 
Health Statistics, is a well-known, nationally representa-
tive, cross-sectional survey that is performed across 
the United States [30, 31]. The National Center for 
Health Statistics (NCHS) Research Ethics Review Board 
approved the study procedure. At the time of recruit-
ment, all participants provided written consent. The 
survey was conducted during 10 survey cycles over two 
decades (1999–2018). We excluded 32,949 participants 
without fractures questionnaire data, 23,796 participants 
with missing BMI or WC data, and 31,452 participants 
younger than 20 years old. The study eventually included 
28,679 participants (Fig. 1).

Study variables
WWI is an index to evaluate body fat mass and mus-
cle mass, calculated by dividing WC (cm) by the square 
root of body weight (kg) [32]. At the mobile examina-
tion center, certified health technicians measured par-
ticipants’ weight and waist circumference. Participants’ 
weights were determined by removing shoes and heavy 
clothing, and waist circumference was determined by 
drawing a horizontal line above the highest lateral border 
of the right iliac bone to plot the right mid-axillary line 
and placing a tape measure at the intersection of the two 
lines [33]. For the purpose of the participant’s current 
fracture or fracture history diagnosis, participants were 
asked to recall whether they had previously been diag-
nosed with a hip/wrist/spine fracture by a professional 
orthopedic surgeon. An affirmative answer was identified 
as a current fracture or fracture history at the specific 
site [34, 35]. Covariates included demographic variables  
[age, sex, education levels, income-to-poverty ratio (PIR), 
and race]; examination variables  [bone mineral density 
(BMD), waist circumference, and BMI]; laboratory vari-
ables  [LDL-C (low-density lipoprotein cholesterol), total 
25 (OH) D (25-hydroxy vitamin D), total calcium, and 
triglycerides]; dietary variables  [dietary inflammatory 
index (calculated from 45 nutrient intakes)]; question-
naire variables  [smoking status (Never/Ever/Current) 

[36], diabetes (Yes/No), use of hormone therapy (Yes/
No)]. Comprehensive guidance regarding the collection 
methods of variables can be accessed from the NHANES 
Survey Methods (https:// wwwn. cdc. gov/ nchs/ nhanes).

Statistical analysis
As NHANES uses complex multi-stage sampling, we 
included appropriate weights in all statistical analyses 
in accordance with official guidelines [37, 38]. The study 
evaluated the characteristics of participants by dividing 
them into quartiles based on the WWI and employing 
chi-square and t-tests for analysis. Weighted multivari-
ate logistic regression analysis was utilized to explore 
the linear relationship between WWI and fracture, and 
three models were developed to examine the association. 
Model 1 had no adjusted variables, Model 2 adjusted 
for age, gender, and race, and Model 3 adjusted for age, 
gender, race, smoking, dietary inflammatory index, dia-
betes, PIR, total 25 (OH) D, total calcium, use of hor-
mone therapy, triglycerides, BMD, and LDL-C [39]. The 
association’s strength was estimated using the odds ratio 
(OR) and its associated 95% confidence interval (CI) for 
the multivariate model. To assess the linear relationship 

Fig. 1 Flow chart of participants selection. NHANES, National Health 
and Nutrition Examination Survey

https://wwwn.cdc.gov/nchs/nhanes
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between WWI and fracture, the researchers transformed 
WWI from a continuous variable to a categorical variable 
(quartiles) and analyzed trends using trend tests. Sub-
group analyses were carried out to examine the associa-
tion between WWI and fracture in individuals of varying 
gender, race, education, and diabetes status. Interaction 
tests were conducted to determine if the association was 
consistent across subgroups. For all results from multiple 
logistic regression analyses and subgroup analyses, we 
used the estimates from the fully adjusted model (Model 
3) for interpretation. The researchers utilized smooth-
ing curve fitting to explore the nonlinear relationship 
between WWI and fracture [40–43]. All analyses were 
performed using R (version 4.2) or Empowerstats (ver-
sion 5.0), and a p-value < 0.05 was deemed statistically 
significant.

Results
Baseline characteristics
The mean (SD) age and mean WWI (SD) of the 28,679 
participants were 49.99 (18.02) years and 11.02 (0.84), 
respectively. Of these, 48.01% were male and 51.36% were 
non-Hispanic white. The prevalence of hip/wrist/spine 
fractures was 1.09%, 8.87%, and 1.97%, respectively. Com-
pared with the bottom WWI quartile, participants in the 
top WWI quartile were more likely to be female, Mexican 
American, and elderly; in terms of socioeconomic status, 
participants with higher WWI were more likely to have 
lower education and income; in terms of lifestyle, partici-
pants with higher WWI had higher rates of smoking and 
higher dietary inflammatory potential; in addition, par-
ticipants with higher WWI typically had a higher prev-
alence of diabetes and fractures; had higher BMI, waist 
circumference, and lipid levels, and lower BMD, total 25 
(OH) D, and total calcium (Table 1).

Association between WWI and fractures
Table 2 shows the associations between WWI and frac-
tures. The results showed a significant positive linear 
association between WWI with hip fracture and spine 
fracture, while a non-significant negative association 
existed between WWI and wrist fracture. After adjusting 
for all covariates, each unit increase in WWI was associ-
ated with a 5% increase in the odds of hip fracture  [1.05 
(1.01, 1.10)] and an 9% increase in the odds of spine frac-
ture  [1.09 (1.06, 1.13)]. This significant positive associa-
tion was maintained even when WWI was transformed 
into a categorical variable, with participants in the high-
est quartile of WWI having a 68% and 32% increased 
odds of hip fracture  [1.68 (1.11, 2.01)] and spine frac-
ture  [1.32 (1.05, 1.55)], respectively. In addition, the 
results of the smoothed curve fitting further validated the 

nonlinear positive associations between WWI with hip 
fracture and spine fracture (Fig. 2).

Subgroup analyses
We conducted subgroup analysis and interaction tests 
stratified by age, gender, race, BMI, and diabetes to assess 
whether the relationship between WWI and fractures 
was consistent in the general population and identify 
any potential different population settings (Table 3). The 
results showed that the association between WWI and 
hip fracture was significantly different across the educa-
tional population, with participants below high school 
having a 39% and 65% higher prevalence of hip fracture 
than those in high school  [0.60 (0.30, 1.02)] and above 
high school  [0.36 (0.14, 1.02)], respectively. The associa-
tion between WWI and fracture remained stable in the 
other subgroups (P for interaction > 0.05).

Discussion
In the cross-sectional study that enrolled 28,679 eligible 
participants, we investigated the association between a 
new indicator of obesity, the WWI, and fractures at dif-
ferent sites. Our results suggest that elevated WWI is 
significantly associated with higher prevalence of hip 
fracture and spine fracture, but not wrist fracture. These 
findings suggest that WWI may be a valid indicator for 
assessing the association between obesity and fracture 
prevalence. The current findings underscore the signifi-
cance of WWI in preventing and managing patients who 
are at a higher risk of experiencing fractures. Addition-
ally, the findings provide a foundation for future research 
into the causal relationship between WWI and the preva-
lence of fractures.

To our knowledge, this is the first study to assess the 
relationship between WWI and fractures. In the past, 
obesity and being overweight have been considered a 
protective factor of osteoporosis and fractures. Several 
epidemiological studies with menopausal women have 
investigated the association between BMI and fracture 
risk, and these results suggest that an increase in BMI 
is associated with a decreased risk of fracture, with the 
most pronounced protective effect especially for hip 
fractures [18, 44–46]. However, studies contradicting 
these results have gradually increased. In a study that 
included 799 menopausal women, Premaor et al. found 
a significantly lower risk of wrist fracture and a signifi-
cantly higher risk of hip fracture compared with women 
who were not obese [47]. The results of our large sam-
ple size study also suggest an association between ris-
ing WWI and higher hip fractures and a non-significant 
negative association with wrist fractures. A UK cohort 
study that included participants of different genders 
also showed that obese participants had a higher risk 
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Table 1 Basic characteristics of participants by weight-adjusted-waist index quartile

Mean ± SD for continuous variables: the P value was calculated by the weighted linear regression model

(%) for categorical variables: the P value was calculated by the weighted chi-square test

Q quartile, PIR Ratio of family income to poverty, BMI body mass index, LDL-C low-density lipoprotein cholesterol, DII dietary inflammatory index, BMD bone mineral 
density, 25 (OH) D, 25-hydroxy vitamin D

Characteristics Weight-adjusted-waist index P-value

Q1 (< 10.42) N = 7170 Q2 (10.42–11.01) N = 7169 Q3 (11.02–11.60) N = 7170 Q4 (> 11.60) N = 7170

Age (years) 39.00 ± 14.61 47.31 ± 16.02 53.73 ± 16.82 59.94 ± 17.45 < 0.001

Sex, (%) < 0.001

 Male 52.84 52.01 45.61 36.15

 Female 47.16 47.99 54.39 63.85

Race/ethnicity, (%) < 0.001

 Non-Hispanic White 52.86 45.25 48.55 47.60

 Non-Hispanic Black 26.51 17.05 15.92 12.28

 Mexican American 10.60 19.05 22.89 24.77

 Other race/multiracial 10.03 14.65 12.64 12.95

Education level, (%) < 0.001

 Less than high school 12.04 15.39 20.37 25.83

 High school 20.21 23.48 24.90 26.10

 More than high school 67.75 61.13 54.73 48.07

Use of hormone therapy, (%) < 0.001

 Yes 1.56 2.72 2.83 4.06

 No 98.44 97.28 97.17 95.94

Smoking, (%) < 0.001

 Current 25.80 31.30 32.01 28.05

 Ever 41.99 46.44 48.90 50.10

 Never 58.01 53.56 51.10 49.90

Diabetes, (%) < 0.001

 Yes 1.83 4.64 9.29 20.05

 No 98.17 95.36 90.71 79.95

 BMI (kg/m2) 24.56 ± 4.35 27.66 ± 5.01 29.79 ± 5.66 32.85 ± 7.18 < 0.001

 Waist circumference (cm) 84.65 ± 10.07 95.45 ± 11.00 102.72 ± 12.00 112.42 ± 15.07 < 0.001

 Total 25 (OH) D (nmol/l) 76.15 ± 1.37 75.16 ± 1.13 70.65 ± 1.18 64.65 ± 1.07 < 0.001

 Total calcium (mmol/L) 2.45 ± 0.12 2.41 ± 0.09 2.37 ± 0.08 2.28 ± 0.09 < 0.001

 PIR 3.18 ± 1.65 3.15 ± 1.63 2.98 ± 1.64 2.57 ± 1.58 < 0.001

 DII 1.01 ± 1.86 1.27 ± 1.81 1.47 ± 1.78 1.74 ± 1.75 < 0.001

 Triglycerides (mg./dL) 106.40 ± 92.04 131.69 ± 101.96 147.06 ± 138.60 157.97 ± 140.90 < 0.001

 LDL-C (mg/dL) 110.34 ± 33.20 119.28 ± 34.51 120.29 ± 37.35 117.02 ± 36.57 < 0.001

 Lumbar BMD (g/cm2) 1.07 ± 0.15 1.03 ± 0.14 1.01 ± 0.15 1.00 ± 0.16 < 0.001

 Pelvis BMD (g/cm2) 1.28 ± 0.18 1.29 ± 0.17 1.27 ± 0.17 1.21 ± 0.17 < 0.001

 Femoral neck BMD (g/cm2) 0.86 ± 0.15 0.83 ± 0.15 0.81 ± 0.14 0.78 ± 0.15

 Total BMD (g/cm2) 1.16 ± 0.11 1.14 ± 0.11 1.11 ± 0.11 1.08 ± 0.12

Hip fractures < 0.001

 Yes 0.70 1.02 1.24 1.42

 No 99.30 98.98 98.76 98.58

Wrist fractures < 0.001

 Yes 9.90 7.98 8.88 8.72

 No 90.10 92.02 91.12 91.28

Spine fractures < 0.001

 Yes 1.62 1.70 2.11 2.44

 No 98.38 98.30 97.89 97.56
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of ankle and upper arm fractures, but a 35% lower 
risk of wrist fractures [48]. The findings of epidemio-
logical studies that contradict this long-held belief have 
spurred renewed interest in the paradigm shift regard-
ing obesity as a protective factor for osteoporotic frac-
tures [49].

On the one hand, with advances in investigation meth-
ods, several studies have identified nonlinear associa-
tions and saturation effects between BMI and fractures 
in a different ages, sex, and ethnic groups, and these 
results suggest that the association between BMI and 
fracture cannot be described simply by a linear positive 

Table 2 The associations between weight-adjusted-waist index and fractures

Model 1: no covariates were adjusted. Model 2: age, gender, race, and BMI were adjusted. Model 3: age, gender, race, smoking, dietary inflammatory index, diabetes, 
PIR, total 25 (OH) D, total calcium, use of hormone therapy, triglycerides, BMD, and LDL-C were adjusted

PIR Ratio of family income to poverty, LDL-C low-density lipoprotein cholesterol, 25 (OH) D 25-hydroxy vitamin D

Exposure Model 1  [OR (95% CI)] Model 2  [OR (95% CI)] Model 3  [OR (95% CI)]

Hip fractures (continuous) 1.30 (1.14, 1.50) 1.22 (1.04 1.40) 1.05 (1.01, 1.10)

Hip fractures (quartile)

 Quartile 1 Reference Reference Reference

 Quartile 2 1.44 (1.00, 2.06) 1.32 (1.02, 1.80) 1.35 (0.95, 1.81)

 Quartile 3 1.81 (1.28, 2.51) 1.33 (1.17, 1.62) 1.32 (1.03, 1.85)

 Quartile 4 2.06 (1.47, 2.81) 1.59 (1.21, 1.97) 1.68 (1.11, 2.01)

 P for trend < 0.001 0.016 0.005

 Wrist fractures (continuous) 0.96 (0.94, 0.98) 0.99 (0.94, 1.05) 0.97 (0.94, 1.06)

Wrist fractures (quartile)

 Quartile 1 Reference Reference Reference

 Quartile 2 0.79 (0.70, 0.88) 0.79 (0.70, 0.89) 0.83 (0.72, 0.93)

 Quartile 3 0.88 (0.79, 0.99) 0.93 (0.82, 1.05) 0.92 (0.77, 1.05)

 Quartile 4 0.88 (0.77, 0.97) 0.91 (0.80, 1.04) 0.85 (0.78, 1.02)

 P for trend 0.045 0.471 0.205

 Spine fractures (continuous) 1.25 (1.15, 1.37) 1.17 (1.05, 1.30) 1.09 (1.06, 1.13)

Spine fractures (quartile)

 Quartile 1 Reference Reference Reference

 Quartile 2 1.15 (0.89, 1.44) 0.99 (0.76, 1.29) 0.83 (0.64, 1.11)

 Quartile 3 1.39 (1.03, 1.75) 1.11 (0.87, 1.47) 1.04 (0.76, 1.34)

 Quartile 4 1.55 (1.23, 2.00) 1.35 (1.03, 1.67) 1.32 (1.05, 1.55)

 P for trend < 0.001 0.015 < 0.001

Fig. 2 The nonlinear associations between weight-adjusted waist index and fractures. The solid red line represents the smooth curve fit between 
variables. Blue bands represent the 95% of confidence interval from the fit. A. WWI and hip fracture; B WWI and wrist fracture; C WWI and spine 
fracture. WWI, weight-adjusted waist index
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correlation [15, 50, 51]. In addition, studies from different 
countries and regions have shown significant differences 
between BMI and fracture risk at different sites [47, 52, 
53].

On the other hand, most studies investigating the 
association between obesity and fractures use BMI and 
WC to measure obesity and cannot distinguish between 
muscle mass, fat mass, and fat distribution. Gnudi et al. 
proposed a link between BMD with fat mass and mus-
cle mass in women with osteoporosis, suggesting body 
composition is an essential element in research exploring 
bone metabolism [54]. The WWI is a unique anthropo-
metric index that is considered to be a marker that can 
assess both high-fat mass and low-muscle mass [55]. The 
"obesity paradox" observed in the relationship between 
BMI or WC and metabolic diseases were observed to be 
less pronounced in WWI [56]. The current findings sug-
gest that the obesity paradox may not exist but is attrib-
utable to BMI’s inability to distinguish between muscle 
mass and fat mass [57]. The results of several recent 
epidemiological studies suggest that WWI outperforms 
BMI, WC, and waist-height ratios in the assessment of 
obesity and cardiovascular disease [58], sarcopenia [57], 
cardiac mortality, and all-cause mortality [23, 59].

The results of the subgroup analyses showed that the 
correlations between WWI and hip fractures differed 
among the subgroups of education level. Results similar 

to this finding have been reported in previous studies 
[60]. Results from a cross-sectional study investigat-
ing American men aged 20 years and older suggest that 
higher education and income are significantly associ-
ated with high lumbar BMD and that the educational 
attainment of participants should be fully considered 
in the prevention and treatment of osteoporotic frac-
tures [61]. The data suggest that the effects of education 
on bone health are broad and complex and may affect 
bone metabolism in a variety of ways, including through 
income, cognition, occupation, and physical activity pat-
terns [62–65]. Despite the consistency of the findings 
concerning significant differences between subgroups 
of educational attainment with prior research, caution 
is warranted in interpreting the significant outcomes 
observed in the subgroup analysis. There is a poten-
tial risk of false positives due to the failure to account 
for multiplicity between subgroups, and this possibility 
should be considered when interpreting the results.

The underlying mechanisms of this negative correla-
tion between WWI and fractures are not fully under-
stood. The metabolic characteristics of subcutaneous and 
visceral fat differ, and pro-inflammatory cytokines and 
tumor necrosis factor-alpha from visceral fat can accel-
erate bone resorption and so have a negative impact on 
bone metabolism [66]. Furthermore, there is compelling 
evidence that mesenchymal stromal/stem cells (MSC) 

Table 3 Subgroup analysis of the association between weight-adjusted-waist index and fractures

Age, gender, race, smoking, dietary inflammatory index, diabetes, PIR, total 25 (OH) D, total calcium, use of hormone therapy, triglycerides, BMD, and LDL-C were 
adjusted

PIR Ratio of family income to poverty, LDL-C low-density lipoprotein cholesterol, 25 (OH) D 25-hydroxy vitamin D

Subgroup Hip fractures  
[OR (95%CI)]

P for interaction Wrist fractures  
[OR (95%CI)]

P for interaction Spine fractures 
BMD  [OR (95%CI)]

P for interaction

Sex 0.109 0.253 0.218

 Male Reference Reference Reference

 Female 1.05 (1.01, 1.10) 0.91 (0.85, 0.94) 0.94 (0.86, 1.02)

Age 0.052 0.930 0.197

 < 60 years Reference Reference Reference

 ≥ 60 years 0.65 (0.34, 0.98) 1.00 (0.85, 1.14) 0.84 (0.52, 1.18)

Race/ethnicity 0.088 0.128 0.301

 Non-Hispanic White Reference Reference Reference

 Non-Hispanic Black 1.28 (0.73, 2.15) 0.75 (0.60, 1.02) 1.03 (0.54, 1.91)

 Mexican American 1.23 (0.74, 2.00) 0.79 (0.63, 1.04) 0.82 (0.53, 1.20)

 Other race 1.12 (0.71, 1.63) 1.09 (0.81, 1.40) 1.85 (1.10, 3.15)

Education level 0.041 0.688 0.509

 Less than high school Reference Reference Reference

 High school 0.60 (0.30, 1.02) 0.96 (0.84, 1.16) 0.96 (0.71, 1.32)

 More than high school 0.36 (0.14, 1.02) 0.96 (0.81, 1.02) 1.08 (0.84, 1.40)

Diabetes 0.852 0.601 0.811

 Yes reference reference reference

 No 0.89 (0.68, 1.15) 0.95 (0.87, 1.02) 1.06 (0.90, 1.25)
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are negatively associated with adipocytic and osteoblast 
commitment. The same mechanisms that govern MSC 
formation locally within the marrow microenvironment 
may act systemically between peripheral adipose depots 
and trabecular and cortical bone in cases of subcutane-
ous or visceral obesity [67, 68].

The strengths of our study include the use of a complex 
multi-stage probability sampling design and a large sam-
ple size, which increase the reliability and representative-
ness of our study. Our research has several limitations. 
First, we were unable to determine a causal association 
between WWI and fractures because to the design of the 
cross-sectional analysis. In addition, due to database lim-
itations, we were unable to include data on all covariates 
that have an impact on bone metabolism, such as meno-
pause, in order to maintain a sufficiently large sample 
size. Nevertheless, the current correlation between WWI 
and fractures was stable enough to be less likely to be sig-
nificantly influenced by unincluded factors.

Conclusion
Our results suggest that higher WWI is associated with 
an increased prevalence of hip fracture and spine frac-
ture, but not wrist fracture. Further prospective studies 
and causal inference studies are needed to validate our 
findings.
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