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Abstract 

Background: For knee osteoarthritis, the commonly used radiology severity criteria Kellgren–Lawrence lead to vari-
ability among surgeons. Most existing diagnosis models require preprocessed radiographs and specific equipment.

Methods: All enrolled patients diagnosed with KOA who met the criteria were obtained from **** Hospital. This 
study included 2579 images shot from posterior–anterior X-rays of 2,378 patients. We used RefineDet to train and 
validate this deep learning-based diagnostic model. After developing the model, 823 images of 697 patients were 
enrolled as the test set. The whole test set was assessed by up to 5 surgeons and this diagnostic model. To evaluate 
the model’s performance we compared the results of the model with the KOA severity diagnoses of surgeons based 
on K-L scales.

Results: Compared to the diagnoses of surgeons, the model achieved an overall accuracy of 0.977. Its sensitivity 
(recall) for K-L 0 to 4 was 1.0, 0.972, 0.979, 0.983 and 0.989, respectively; for these diagnoses, the specificity of this 
model was 0.992, 0.997, 0.994, 0.991 and 0.995. The precision and F1-score were 0.5 and 0.667 for K-L 0, 0.914 and 
0.930 for K-L 1, 0.978 and 0.971 for K-L 2, 0.981 and 0.974 for K-L 3, and 0.988 and 0.985 for K-L 4, respectively. All K-L 
scales perform AUC > 0.90. The quadratic weighted Kappa coefficient between the diagnostic model and surgeons 
was 0.815 (P < 0.01, 95% CI 0.727–0.903). The performance of the model is comparable to the clinical diagnosis of KOA. 
This model improved the efficiency and avoided cumbersome image preprocessing.

Conclusion: The deep learning-based diagnostic model can be used to assess the severity of KOA in portable 
devices according to the Kellgren–Lawrence scale. On the premise of improving diagnostic efficiency, the results are 
highly reliable and reproducible.
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Introduction
Knee osteoarthritis (KOA) is a degenerative joint disease 
with a prevalence ranging from 4 to 12% [1–3]. Currently, 
for orthopaedic surgeons, knee weight-bearing standing 
X-ray radiographs as a standard method for evaluating 
KOA remain the most common radiology examination 
method due to their safety, popularity and low cost [4–6]. 
Currently, accurate KOA diagnosis and assessment are 
highly based on radiographic evidence [7, 8].

Currently, the Kellgren–Lawrence scale (K-L) is most 
commonly used to diagnose and determine the severity 
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of KOA based on joint space narrowing, osteophytes, 
sclerosis, and definite bony deformities on X-rays in 
radiology examinations [9, 10]. However, the classifi-
cation criteria of the K-L scales are subjective [11]. In 
clinical use, different doctors or the same doctor at dif-
ferent times may often obtain similar results rather than 
identical results on the same X-ray. Many clinical stud-
ies involving KOA diagnosis have ensured reliability by 
increasing the number of repeated diagnoses [12–16]. 
Moreover, the total numbers of X-ray examinations are 
much higher in large hospitals, which is a heavy burden 
on radiologists and surgeons. Therefore, many rapid 
diagnosis and assessment models have been developed 
in collaboration with image analysis. The models can 
identify images via digital processing techniques to make 
the artificial intelligence process more accurate and cost-
effective [13]. The technology includes knee joint recog-
nition and image processing based on deep learning [14]. 
Swiecicki et al. [15] developed a diagnostic model based 
on the two-stage Faster R-CNN model to assess the 
severity of KOA from both posterior–anterior (PA) and 
lateral (LAT) views. Tiulpin et  al. [16] also developed a 
diagnostic model based on the ResNet34 model to detect 
KOA from original PA views of knees. Similarly, Nor-
man et al. [17] developed a KOA diagnostic model based 
on DenseNet, which uses the feature more effectively in 
deep technology. Current studies show that the existing 
diagnostic models can achieve satisfactory accuracy [15–
17]. However, those models rely on preprocessed, highly 
optimized digital images in specific software and hard-
ware, which may not be feasible in most clinical scenarios 
and affects the actual use value in some ways [18–23]. 
We developed a fast, easy-to-use model based on port-
able devices to facilitate the diagnosis of KOA in clinical 
situations.

This retrospective study aimed to develop an algo-
rithm-based diagnostic model for KOA showing on 
unpreprocessed radiographs in portable devices. The 
X-ray-based KOA was evaluated by surgeons and diag-
nostic models, and the results were compared. We 
hypothesized that this model can achieve the same or 
similar accuracy as surgeons.

Materials and methods
The study was approved by the Institutional Review 
Board of the hospital involved. Informed consent was 
obtained from all participants. All methods were per-
formed in accordance with the relevant guidelines and 
regulations.

We retrospectively collected radiographs of patients 
who underwent radiographic examination at the **** 
Hospital from January 2020 to January 2021 (each 
patient may have multiple radiographs). All radiographs 

were taken using uDR 780i Pro Fully Automatic Celling-
mounted DR (UNITED IMAGING, Shanghai, China). 
Patients meeting the following criteria were included: 
(1) age ≥ 40, (2) a KOA diagnosis established based on 
the Chinese Guidelines for the Diagnosis and Treatment 
of Osteoarthritis (2019 edition) [24], (3) combined with 
pain, limited movement or other symptoms, (4) unilat-
eral or bilateral weight-bearing standing posterior–ante-
rior (PA) X-rays of knee joints, and (5) previous unilateral 
knee surgery history or no surgery history of both knees. 
Patients meeting the following criteria were excluded: (1) 
nonweight-bearing standing position or lateral X-rays of 
knee joints, (2) diagnosed inflammatory arthropathies 
(such as comorbidity such as rheumatoid arthritis, anky-
losing spondylitis), (3) severe knee joint deformity, (4) 
other comorbidities that may cause knee joint deformity 
(such as arthritis of haemophilia, enteropathic arthropa-
thy or traumatic osteoarthritis), (5) history of intra-
articular fracture or fractures around the knee, (6) X-ray 
shows fusion on knee joint, (7) diagnosed infectious 
arthritis or postoperative joint infection, (8) implants of 
both knee joints shown in a radiograph (such as internal 
fixation or knee prosthesis), (9) incorrect posture (such 
as rotation or flexion of the lower limbs); and (10) poor 
image quality.

After reviewing the 2,579 included PA X-rays from 
2,378 patients, we divided these radiographs into training 
(1,598 radiographs), validation (158 radiographs) and test 
sets (823 radiographs) (as shown in Table 1). Each X-ray 
in the training set and validation set was scaled by skilled 
radiologists and orthopaedic surgeons based on K-L 
scales (K-L 0: No evidence of KOA; K-L 1: The possibility 
of joint space narrowing and osteophyte formation; K-L 
2: Definite osteophyte formation and possible joint space 
narrowing; K-L 3: Multiple osteophytes, definite joint 
space narrowing, sclerosis, and possibly bone deformity; 
K-L 4: End-stage KOA marked by severe sclerosis, joint 
space narrowing, and large osteophytes).

Radiograph preprocessing
All radiographs were captured using mobile phones 
(iPhone 8 Plus, Apple Inc.) During the shoot, in the case 
of an indoor light source, the phone was fixed on a tri-
pod, 40  cm away from the radiographs, flush with the 
centre of the radiographs. All photographs were stored in 
JPG format as 4000 × 3000 pixels. For the training set and 
validation set, cropped localization ground truths around 
the knee were made manually by skilled radiologists and 
orthopaedic surgeons and implemented in MATLAB 
(Mathworks, Natick, MA). Those are resized to 512 × 512 
pixels using a bilinear interpolation algorithm and then 
normalized by the z score method with statistical mean 
pixel intensities and variances.
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Model architecture
We formulate the KOA severity assessment to a detection 
task: to localize the knee joint while classifying the K-L 
scale based on a prevalent detection model RefineDet 
[25] (the proposed model is shown in Fig. 1). It consists 
of two connected modules, an anchor refinement mod-
ule (ARM) and an object detection module (ODM). Spe-
cifically, the ARM is designed to localize the knee joint 
area with bounding boxes, i.e., anchors and generate the 
candidate anchors on the left/right knees for ODM. The 
ODM takes the candidate anchors as the input to further 
refine the localizations and sizes of anchors and predict 
the K-L scale of the corresponding knee joint. In addi-
tion, the transfer connection block (TCB) is introduced 

to convert the features from ARM to ODM at different 
scales and fuse context information from high-level fea-
tures to improve detection accuracy. The ARM is trained 
with anchor binary classification loss and anchor bound-
ing box regression loss, while the ODM is trained with 
K-L scale classification loss and knee joint bounding box 
regression loss.

In object detection, range of interest (ROI) placement 
is primarily located through the ARM module and ODM 
module in RefineDet. The ARM module retrieved pro-
posals through 4 stages of the CNN block as a candidate 
set of ROIs. Each proposal predicts the corresponding 
bounding box coordinates and judges whether it is an 
ROI. These proposals provided the initial information for 
the subsequent detection of the ODM module. The ODM 
module integrated information from different stages, 
further regressed the coordinates of the ROI to improve 
positioning accuracy, and classified the targets in the 
ROI. Since the model can predict multiple proposals, we 
conducted postprocessing of Non-Maximal Suppression 
(NMS)36 according to the confidence of different propos-
als with the IoU threshold of 0.5, and finally obtained one 
ROI for a knee joint.

The proposed model is implemented using PyTorch 
and trained on a machine with 4 Nvidia P100 GPUs. The 
parameters of the network are initialized with the pre-
trained model from the large public dataset ImageNet 
[26]. In addition, training datasets are augmented by 
several methods followed [27]. During training, the net-
work is optimized by Adam [28] with the learning rate 
first warmed from 2e-2 to 1e-1 for 1e4 iterations and 
then decreased to 1e-2, 1e-2 and 1e-3 at the 3e4, 3.5e4 
and 4e4 epochs. The momentum is set to 0.9, and the 
weight decay is set to 5e-4. The overall optimization is 
carried out for 4e5 iterations with a batch size of 128. In 
actual use, the model was used to evaluate both medial 
and lateral compartments of knee joints. The diagnosis 
of the more severe compartment was used as the diag-
nosis of KOA in a knee joint according to the K-L grade. 

Table 1 Dataset split of included patients

TKA Total knee arthroplasty; UKA Unicompartmental knee arthroplasty; I-F 
Internal fixation; E–F External fixation; PFA Patellofemoral arthroplasty; K-L 
Kellgren–Lawrence scales

Classification Training set Validation set Test set

Patients 1532 149 697

Radiographs 1598 158 823

Right knees 1337 141 495

Left knees 1162 122 446

Total knees 2499 263 941

Implants 267 21 96

TKA 158 12 59

UKA 86 4 24

PFA 8 1 3

E–F 2 1 3

I-F 13 3 7

K-L scales

K-L 0 49 1 3

K-L 1 214 10 59

K-L 2 237 26 146

K-L 3 1002 115 379

K-L 4 997 111 354

Total 2499 263 941

Fig. 1 Pipeline of RefineDet Model for K-L Classification CNN Convolutional Neural Network; PA Posterior–anterior view standing bearing X-ray; TCB 
Transfer connection block; OA Osteoarthritis; K-L Kellgren–Lawrence
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For example, as the schematic diagram of the RefineDet 
model shown in Fig. 1, the left knee was diagnosed as K-L 
4 mainly due to more severe stenosis of the medial com-
partment. The right knee was diagnosed as K-L 3 due to 
more osteophytes in the medial compartment and similar 
stenosis of both compartments.

Surgeons’ evaluation
For the test set, the ground outcomes were first evaluated 
by up to 5 members of our research team. Based on the 
K-L scales, three senior orthopaedic surgeons assessed 
the severity of KOA after the identity information of 

patients was removed. For each photograph, when there 
are two or three of the same K-L scale, it is used as the 
ground truth. The inconsistent or doubted evaluations 
were discussed and determined by two chief surgeons 
(the flowchart is shown in Fig. 2).

Statistical analysis
To assess the performance of the diagnostic model, we 
adopted accuracy, precision, recall, AUC, sensitivity 
and specificity as indicators. We also used the quadratic 
weighted Kappa coefficient to verify the consistency 
among the model, manual summary (results were put 

Fig. 2 Experimental flowchart for test set K-L Kellgren–Lawrence
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together by all surgeons), and each senior orthopaedic 
surgeon [29]. To make it more intuitive, we adopted a 
confusion matrix to visualize the results. The model was 
developed and trained using PyTorch (v. 1.4). The data 
were analysed using R (4.0.0) and SPSS Version 25.0.0.2 
(SPSS, Inc., Chicago, Ill.).

Results
We included 1,598 PA X-rays in the training set, 158 PA 
X-rays in the validation set and 823 in the test set (as 
shown in Table 1). The most common KOA severities of 
patients in this study were K-L 3 (1,481 knee joints) and 
K-L 4 (1,449 knee joints), which is similar to the results 
that we observed in the clinic. For the test set used 
to assess the performance of this model, as shown in 
Table 2, the mean age of the patients was 61.7 ± 11.2 yrs 
(40–87 yrs old), 12.2% (n = 85) had a unilateral knee sur-
gery history, and a total of 352 patients had comorbidi-
ties (one patient may have multiple comorbidities). The 
diagnostic model identified 95.7% of all knee joints (901 
of 941, and no implants included) in the test set.

For the assessment of KOA-based K-L scales (a five-
category classification task), in the validation set, the 
model’s sensitivity (also called recall) and specificity 
for assessing KOA severity were 1.0 and 0.992 for K-L 
0, 0.972 and 0.997 for K-L 1, 0.979 and 0.994 for K-L 2, 
0.983 and 0.991 for K-L 3, and 0.989 and 0.995 for K-L 
4. The corresponding sensitivity (recall) and specificity 
in the test set were 1.0 and 0.998 for K-L 0, 0.946 and 

0.994 for K-L 1, 0.971 and 0.996 for K-L 2, 0.978 and 
0.987 for K-L 3, and 0.982 and 0.993 for K-L 4, respec-
tively (as shown in Table 3). For each K-L scale, the sen-
sitivity (recall) and specificity showed that the model 
indicated the proportion of true prediction samples in 
patients diagnosed with this scale or false prediction 
samples in non-this-scale patients (Table 4).

Assessing the performance of the model in the test set 
achieved an accuracy of 95.7%, which indicates the pro-
portion of K-L scales predicted correctly in all included 
samples. This model made the entire assessment pipe-
line just under 5  s for a given unpreprocessed image. 
The precision was 0.5 (AUC = 0.999 P = 0.015, 95% CI 
0.997–1.0) for K-L 0, 0.914 (AUC = 0.970 P < 0.01, 95% 
CI 0.936–1.0) for K-L 1, 0.978 (AUC = 0.982 P < 0.01, 
95% CI 0.966–0.999) for K-L 2, 0.981 (AUC = 0.981 
P < 0.01, 95% CI 0.970–0.992) for K-L 3, 0.988 
(AUC = 0.988 P < 0.01, 95% CI 0.979–0.997) for K-L 4, 
which shows the proportion of images of a given K-L 
scale in the predicted images of this scale for K-L 0 to 4. 
The F1-score, combining precision and recall to avoid 
imbalances of different K-L scales in included images, 

Table 2 Characteristics of patients in test set

TKA total knee arthroplasty; UKA Unicompartmental knee arthroplasty; I-F 
Internal fixation; E–F External fixation; PFA Patellofemoral arthroplasty; KOA Knee 
osteoarthritis; CHD Coronary heart disease

Variable Overall (n = 697)

Male(no.[%]) 221 (31.8%)

Female(no.[%]) 476 (68.3%)

Age (years) 61.7 ± 11.2 (40–87)

Comorbidity 352

Hypertension 221

Diabetes 104

Hyperlipemia 128

CHD 152

Osteoporosis 193

Mental disorder 38

Surgery history(no.[%]) 96

unilateral UKA 24

unilateral TKA 59

unilateral HTO 5

unilateral PFA 3

unilateral bone fracture 5

Table 3 Precision, Recall, F1 score and AUC of test set in each 
scale of knee osteoarthritis

K-L Kellgren–Lawrence; AUC  Area under curve

K-L 
scale

Knee(n  
= 901)

Precision Recall F1 
score

AUC (95% CI)

K-L 0 2 0.5 1 0.667 0.999

(0.997–1.0)

K-L 1 56 0.914 0.946 0.93 0.97

(0.936–1.0)

K-L 2 138 0.978 0.971 0.971 0.983

(0.966–0.999)

K-L 3 364 0.981 0.978 0.974 0.981

(0.970–0.992)

K-L 4 341 0.988 0.982 0.985 0.988

(0.979–0.997)

Table 4 Sensitivity and specificity of validation set and test set in 
each scale of knee osteoarthritis

K-L Kellgren–Lawrence

Validation set Test set

K-L scale Sensitivity Specificity Sensitivity Specificity

K-L 0 1 0.992 1 0.998

K-L 1 0.972 0.997 0.946 0.994

K-L 2 0.979 0.994 0.971 0.996

K-L 3 0.983 0.991 0.978 0.987

K-L 4 0.989 0.995 0.982 0.993



Page 6 of 8Yang et al. Journal of Orthopaedic Surgery and Research          (2022) 17:540 

was 0.667, 0.930, 0.971, 0.984 and 0.985 for K-L 0 to 4, 
respectively.

The confusion matrix is shown in Fig.  3, which 
recorded the samples assessed by the model and sur-
geons in the test set according to K-L scales. The diagonal 
represents the number of consistent diagnoses between 
surgeons and the model for each scale (2, 53, 134, 356 
and 335, respectively). The quadratic weighted Kappa 
coefficient between the surgeons’ summary and diagnos-
tic model was 0.815 (P < 0.01, 0.727–0.903). The average 
quadratic weighted Kappa coefficient between the model 
and each surgeon was 0.853 (P < 0.01, 95% CI 0.769–
0.936) (as shown in Fig. 4), which shows the consistency 
between the model and clinical diagnosis.

Discussion
Compared to similar studies [12, 15–19] this study fur-
ther demonstrates the potential of implementation to aid 
in the diagnosis and even acceptably classifying KOA. 
This model achieved an accuracy of 95.7%, which was 
approximate to or higher than those of similar stud-
ies. For given photographs showing different severities 
of KOA, this model can achieve high-accuracy diag-
nosis based on K-L scales and avoid time consumption. 
The sensitivity and specificity of the test set were simi-
lar to those of the validation set on different K-L scales 
(as shown in Table 3). In K-L 0, the precision was 0.5. In 
addition to 2 correct diagnoses, another 2 middle-aged 

women (54 years and 58 years) were misdiagnosed as K-L 
0 in the model because each of their PA X-rays showed 
mild osteoporosis on one knee, and surgeons diagnosed 
K-L 1 as potentially KOA. Some similar patterns were 
seen in patients with K-L 1, but for those diagnosed as 
K-L 0 or K-L 1, intervention is usually not needed. There-
fore, the results do not mislead clinical treatment. For 
K-L 3, the specificity was 0.987. After analysing these 
patients, we found that some patients with advanced 
age, poor mobility and other conditions were diagnosed 
as K-L 4 by surgeons, but their PA X-rays showing were 
not completely consistent with the symptoms, so some of 
them were misdiagnosed as K-L 3 by this model. In fact, 
the clinical treatment of such patients is basically the 
same as that of K-L 4 patients diagnosed by the model, 
so it does not largely impact the actual use. In Fig. 3, the 
confusion matrix shows that the diagnosis of KOA sever-
ity is consistent between surgeons and the model in the 
vast majority of included cases. In Fig.  4, the quadratic 
weighted Kappa coefficient between the manual sum-
mary and this model was generally excellent (0.815 > 0.8), 
which indicates the reliability of this model. The sensitiv-
ity and specificity between the validation and test sets 
also suggest that the results of diagnoses are reliable and 
reproducible. In the actual test process, the efficiency 
of using the model for diagnosis is indeed significantly 
higher than that of repeated diagnoses by surgeons.

Currently, in many studies involving radiology diagno-
sis of KOA, researchers are increasingly using an increas-
ing number of repeated diagnoses for one X-ray to assure 
reliable results due to limitations of the K-L scales. Ben-
efiting from the rapid growth of artificial intelligence in 
clinical use, algorithm-assisted diagnosis can effectively 
acquire highly reliable and repeatable results in these 
situations. However, the existing diagnostic models are 
mostly based on high-quality images integrated into 
data centres [16, 17, 23, 30, 31]. Images storage and use 

Fig. 3 Confusion matrix of K-L scales Confusion matrix shows the 
diagnosis results of model and summary by surgeons. True labels 
(diagnosed by surgeons) are the columns and the predicted labels 
(diagnosed by model) are the rows. The diagonal represents the 
number of correct predictions for each K-L scale. The total number of 
subjects in each group can be obtained by summing that respective 
column. Darker squares represent a higher percentage of that group 
classified for a predicted label) K-L Kellgren–Lawrence

Fig. 4 Quadratic weighted Kappa coefficient Quadratic weighted 
Kappa coefficient shows the consistency between all pairs Surgeon: 
Diagnosis results of each surgeon Deep Learning: Diagnosis results of 
diagnostic model Manual Summary: Summary of diagnosis results of 
all surgeons K-L Kellgren–Lawrence (P < 0.01)
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of models are not convenient, most need preprocessing 
and particular equipment. Typical photographs taken by 
mobile phones are rarely used due to suboptimal camera 
angles or lighting or other factors. The major difference 
between our study and those mentioned above is that we 
allowed the RefineDet model to diagnosis in PA X-rays 
without preprocessing. Unlike the study by Swiecicki 
et  al. [15] using a two-stage Faster R-CNN model, we 
used a one-stage RefineDet model for KOA severity 
on PA X-rays. From the results, our diagnostic model 
was more accurate (Faster R-CNN 70.9% vs. RefineDet 
95.7%). And from the architecture of the model, one-
stage methods were less computing and more efficient 
than two-stage methods. After the actual use, we spec-
ulated that one-stage methods may be more advanta-
geous in high-volume clinical data application scenarios 
such as outpatient clinics. And Guan et  al. [31] using a 
one-stage YOLO model for joint cropping, validated the 
one-stage model to be also reliable in predicting radio-
graphic medial joint space loss within a 48-month follow-
up period. In contrast to other studies, RefineDet model 
achieved higher accuracy than two-stage methods, which 
also makes it ideal for portable devices to improve the 
efficiency of relevant diagnosis on KOA. However, all 
current studies have been confined to processing regu-
lar images. The effectiveness of one-stage or two-stage 
methods in the application of complex image results still 
needs to be compared in future studies.

Additionally, this diagnostic model can be applied to 
these scenarios: (1) in outpatient services, it can assist 
doctors in clinical diagnosis and can be further used in 
telemedicine. (2) Patients can obtain a preliminary diag-
nosis about their current severity of KOA by uploading 
radiographs. (3) For surgeons who lack clinical experi-
ence, it can be used to assist learning and accumulate 
experience for their growth. (4) In the future, it can be 
combined with other algorithms to form a predic-
tion model to assess a patient’s disease progression and 
prognosis.

There are main advantages of this diagnostic model: 
(1) it achieves satisfactory accuracy in avoiding cum-
bersome image preprocessing; thus, users can take 
photos directly in an easy-to-acquired way; (2) the 
automatic assessment process requires high reliability 
and repeatability results, and the possible differences 
between manual diagnoses by surgeons are effectively 
avoided; and (3) it avoids interference from implants, 
markers in radiographs and some degree of angle 
changes of conventional shooting (some of the photos 
show unilateral prosthesis, internal or external fixa-
tion). When clicking around the knee joint on a screen 
to display the diagnostic model’s K-L scale, if it detects 
impairment, there was no display around the knee.); (4) 

a direct aid to remote clinical decision-making; (5) a 
patient prioritization model that shortens waiting time 
and improves patient experience and satisfaction; and 
(6) a practical approach that facilitates medical edu-
cation, training, and research. The diagnostic model 
has potential disadvantages. A machine occasionally 
requires software and hardware updates to meet the 
latest requirements, which may require costs. Artificial 
intelligence based on preloaded data and experience 
cannot be creative like surgeons.

This study has limitations. First, surgeon preference, 
experience, and ability may influence ascertaining the 
diagnoses and assessments [32]. Second, although the 
study shows that this model has good reliability and 
reproducibility in radiology assessment, the specific 
diagnosis still needs other evidence, such as the patient’s 
clinical manifestations, laboratory tests, and other imag-
ing findings [12]. Third, in the process of use, due to the 
restrictions of the algorithm, there may be some pho-
tos in which the entire knee joints cannot be identified, 
and the diagnostic model does not display a diagnosis if 
the algorithm detects implants or no object. Therefore, 
there may be a subset that is not identified as implants or 
knee joints, which requires rephotographing or further 
diagnosis by surgeons. Fifth, compared to similar stud-
ies, our sample size is relatively small and from a single 
hospital, and outcomes from a larger cohort and multiple 
countries may be different. Sixth, we propose the deep-
learning-based RefineDet for object detection and clas-
sification, but the outcomes may be different based on 
other algorithms.

Conclusion
The deep learning-based diagnostic model can be used 
to assess the severity of KOA in portable devices. On 
the premise of improving the diagnostic efficiency, the 
results are highly reliable and reproducible.
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