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Abstract 

Objective:  Osteosarcoma (OS) is more common in adolescents and significantly harmful, and the survival rate is 
considerably low, especially in patients with metastatic OS. The identification of effective biomarkers and associated 
regulatory mechanisms, which predict OS occurrence and development as well as improve prognostic accuracy, will 
help develop more refined protocols for OS treatment.

Methods:  In this study, genes showing differential expression in metastatic and non-metastatic types of OS were 
identified, and the ones affecting OS prognosis were screened from among these. Following this, the functions and 
pathways associated with the genes were explored via enrichment analysis, and an effective predictive signature was 
constructed using Cox regression based on the machine learning algorithm, least absolute shrinkage and selection 
operator (LASSO). Next, a correlative competing endogenous RNA (ceRNA) regulatory axis was constructed after 
verification by bioinformatics analysis and luciferase reporter gene experiments conducted based on the prognostic 
signature.

Results:  Overall, 251 differentially expressed genes were identified and screened using bioinformatics and double 
luciferase reporter gene experiments. An effective prognostic signature was constructed based on 15 genes asso-
ciated with OS metastasis, and upstream non-coding RNAs were identified to construct the “NBR2/miR-129-5p/
FKBP11” regulatory axis based on the ceRNA networks, which helped identify candidate biomarkers for the OS clinical 
diagnosis and treatment, drug research, and prognostic prediction, among other applications. The findings of this 
study provide a novel strategy for determining the mechanism underlying OS occurrence and development and the 
appropriate treatment.

Keywords:  Experimental validation of dual luciferase reporter gene, Metastasis-related gene signature, 
Osteosarcoma, Competing endogenous RNA network, Machine learning
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Background
Osteosarcoma (OS) is a malignant tumor of mesenchy-
mal origin with a poor prognosis [1, 2]. Tumor metastasis 
is a persistent issue, and the existing clinical treatments 
are ineffective [2–4]. The 5-year survival rate of OS has 
increased to approximately 70% since the 1970s, but 
the 5-year survival rate post-metastasis remains as low 
as 20–30% [5]. Therefore, to reduce overtreatment and 
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clinical monitoring, it is essential to thoroughly under-
stand the mechanisms underlying OS metastasis and 
identify effective biomarkers that predict OS occurrence 
and development and improve prognostic accuracy. This 
would help facilitate the development of reliable early 
diagnostic options and effective treatment strategies.

Only 2% of human transcriptome RNAs can encode pro-
teins, and the remaining 98% are non-coding RNA (ncR-
NAs) [6, 7]; these include ribosomal RNAs, long ncRNAs 
(lncRNAs), and microRNAs (miRNAs), among others. With 
the development of bioinformatics and gene transcription 
technology in recent years, the dysregulation of ncRNA 
expression profiles has been found to be associated with the 
cellular processes involved in multiple human malignancies 
[8, 9]. In addition, researchers have also found mutual tar-
geting regulation among different types of ncRNAs [10].

Salmena et  al. [10] proposed the concept of competing 
endogenous RNA (ceRNA), describing it as an element that 
regulates the transcription of other RNAs by competitively 
binding shared miRNAs [8]. The lncRNA, as a ceRNA, 
regulates mRNA expression by competitively binding to 
miRNAs, which, in turn, exerts regulatory effects on the 
translation of the corresponding proteins and the cellu-
lar activities the proteins are associated with [10, 11]. Evi-
dently, abnormal ceRNA expression can be closely related 
to OS occurrence, development, and prognosis. Find-
ings from studies on regulatory key axes and points in the 
ceRNA network may suggest novel candidate therapeutic 
targets, predictive targets, and regulatory target axes for the 
prevention and treatment of OS metastasis.

In this study, we identified genes showing abnormal 
expression in samples of OS metastases obtained from the 
TARGET database, constructed a prognostic signature for 
OS and tested its predictive accuracy, constructed a ceRNA 
network to understand the upstream regulatory relation-
ship, and proposed the "NBR2/miR-129-5p/FKBP11 regu-
latory axis." The prognostic signature of OS identified in 
this study and the proposal of the "NBR2/miR-129-5p/
FKBP11" regulatory axis will, on one hand, provide a prog-
nostic target for the treatment of OS metastasis and, on the 
other hand, contribute to a more thorough understand-
ing of the immunoregulatory mechanism of genes in OS. 
Conversely, it will provide novel insights into the molecular 
mechanisms underlying OS and provide new directions for 
clinical treatment and research on OS.

Materials and methods

1.	 Sample extraction and coarse data processing

	1.1.	 Initial acquisition of information on metastatic and 
non-metastatic OS samples

Raw counts of RNA sequencing data and corre-
sponding clinical information for 98 OS samples were 
obtained from the TARGET dataset (https://​ocg.​cancer.​
gov/​progr​ams/​target); the clinical information is shown 
in Table  1. The study method was in compliance with 
that outlined in the TARGET public database (https://​
ocg.​cancer.​gov/​progr​ams/​target), and the above data 
were listed under open access and did not require 
additional consent from the local ethics committee for 
acquisition.

	1.2.	 Screening of differentially expressed mRNAs in 
metastatic and non-metastatic OS

The Limma package (version: 3.40.2) of R software was 
used for differential mRNA expression analysis between 
the non-metastatic and metastatic groups, using Fold 
change = 1.5 and FDR < 0.05 as thresholds.

2.	 Differential gene enrichment analysis and PPI net-
work construction

R package ClusterProfiler (version: 3.18.0) was used to 
perform KEGG pathway enrichment and GO BP enrich-
ment analysis for differentially upregulated and downreg-
ulated genes, respectively. For PPI network construction, 
the differentially expressed genes were imported into the 
STRING database, with the confidence level set to 0.4 
and the rest parameters set to default.

3.	 Prognostic information from differentially expressed 
genes

Prognostic analysis was performed for the differentially 
expressed genes, and Kaplan–Meier curves were plot-
ted to identify the genes associated with prognostic dif-
ferences, using the R packages survival and survminer. 
For the Kaplan–Meier curves, p values and hazard ratios 
(HRs) with 95% confidence intervals (CIs) were derived 
using the log-rank test and univariate Cox proportional 

Table 1  Clinical information on osteosarcoma in the TARGET 
dataset

Clinical information Group Sample size Percentage

Age ≤ 15 48 49

> 15 50 51

Gender Female 40 40.8

Male 58 59.2

Metastatic Non-metastatic 67 68.4

Metastatic 20 20.4

Unknown 11 11.2

https://ocg.cancer.gov/programs/target
https://ocg.cancer.gov/programs/target
https://ocg.cancer.gov/programs/target
https://ocg.cancer.gov/programs/target
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hazards regression. Values with P < 0.05 were considered 
statistically significant.

4.	 Construction of prognostic signatures

Genes found to be associated with prognosis (P < 0.05) 
in 3 were screened for variables using a machine learning 
algorithm, least absolute shrinkage and selection opera-
tor (LASSO) with the "glmnet" package of R software, and 
a predictive signature for OS prognosis was established 
based on Cox regression. Tenfold cross-validation was 
performed to improve the reliability and objectivity of 
the analysis. The patients were divided into high-risk and 
low-risk groups based on the combined signature, and the 
Kaplan–Meier survival method was used to analyze the 
associated genes and survival rates. The log-rank test was 
used to calculate the p value of the Kaplan–Meier survival 
curve. Finally, receiver operating characteristic (ROC) 
curves were established using the R package "time ROC," 
and the area under the curve (AUC) was used to assess 
the predictive accuracy of the prognostic signature.

5.	 Construction of the ceRNA network

The genes in the prognostic signature were imported 
into the ENCORI database (http://​starb​ase.​sysu.​edu.​cn/) 
to predict mRNA upstream miRNAs, and for construct-
ing the mRNA-miRNAs network, the intersection was 
considered to identify upstream miRNAs that met the 
miRanda, miRma, and TargetScan database inclusion cri-
teria. The dataset GSE65071 was downloaded to validate 
the expression of miRNAs in the network in normal ver-
sus OS groups. The dataset GSE79181 was downloaded 
to identify the miRNAs with survival curve P<0.05 in the 
network, which were the key miRNAs. Similarly, the miR-
NAs were imported into the ENCORI database to predict 
upstream lncRNAs and construct the miRNA-lncRNA 
network. Using the R software package (v 4.0.3) survival 
and survminer (R Foundation for Statistical Computing, 
2020), DFS analysis was performed using the lncRNAs 
in the network, and values with P < 0.05 were considered 
statistically significant. Kaplan–Meier curves were plotted 
to identify the lncRNAs associated with prognostic differ-
ence (p values and HRs with 95% CIs were derived using 
the log-rank test and univariate Cox proportional hazards 
regression). Finally, the ceRNA network (lncRNA-miRNA-
mRNA network) was constructed using Cytoscape.

6.	 Experimental validation of dual luciferase reporter 
gene

Using liposomes, the miR-129-5p overexpression plas-
mid was cotransfected into 293T cells with miR-NC, the 

pRL-TK luciferase reporter gene, wild-type or mutated 
NBR2, or a wild-type or mutated FKBP11 plasmid. After 
48 h of transfection, luciferase activity was assessed using 
the Dual Luciferase Reporter Gene Assay Kit (Yisheng 
Biotechnology Co., Ltd.) according to the instructions.

7.	 Predictive accuracy of FKBP11 in OS

The median critical point was obtained using the "sur-
vminer" R package. Patients were divided into high-risk 
and low-risk groups, and the Riskscore scatter plot was 
plotted from low to high, with different colors represent-
ing different expression groups. The scatter plot distribu-
tion of survival time and survival status corresponding 
to different sample Riskscore was displayed. The expres-
sion heat map of FKBP11 is presented. Figure 8D shows 
the distribution of FKBP11 in KM survival curves, in 
which different groups were examined using the log-rank 
method. Finally, ROC curves were prepared using the 
"time ROC" R package, and the AUC was used to assess 
the prediction accuracy of FKBP11.

8.	 Data processing

The results were statistically analyzed using R (version 
3.6.3). Values with P < 0.05 were considered to show sta-
tistically significant difference. Firefly luciferase/renilla 
luciferase were values, and intergenic interactions were 
analyzed according to specific experimental groups.

Results

1.	 Flowchart

The flow diagram of this study is shown in Fig. 1.

2.	 Differentially expressed genes

Figure  2A shows that 232 differentially upregulated 
genes and 19 differentially downregulated genes were 
obtained. The red dots in the figure indicate genes with 
significant differential expression owing to upregulation, 
and the blue dots in the figure indicate genes with sig-
nificant differential expression owing to downregulation. 
Figure  2B shows the differential gene expression heat-
map, in which different colors represent the expression 
trends in different tissues. Owing to the large number of 
differential genes, the 50 upregulated genes and 50 down-
regulated genes with the greatest changes in differential 
expression are shown separately. Additional file  1: Fig. 
S1 shows the PPI network of 251 differentially expressed 
genes.

http://starbase.sysu.edu.cn/
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Fig. 1  Flowchart
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3.	 Enrichment analysis

Figure  3A and B shows the enrichment results of dif-
ferentially upregulated genes in the KEGG pathway and 
GO BP, respectively. Figure 3C and D shows the enrich-
ment results of differentially downregulated genes in the 
KEGG pathway and GO BP, respectively. The upregu-
lated mRNAs were the ones primarily involved in Wnt 
signaling pathway, beta signaling pathway, synthesis and 
degradation of ketone bodies, signaling pathways regu-
lating pluripotency of stem cells, rheumatoid arthritis, 
proteoglycans in cancer, protein digestion and absorp-
tion, phagosome, PI3K-Akt signaling pathway, mel-
anogenesis, malaria, lysosome human papillomavirus 
infection, Hippo signaling pathway, ECM-receptor inter-
action, cytokine-cytokine receptor interaction, cushing 
syndrome, cell cycle, bile secretion, and basal cell car-
cinoma and other pathways, which are associated with 
extracellular structure organization, extracellular matrix 
organization, ossification, and other functions. The 
downregulated mRNAs were primarily involved in the 
regulation of actin cytoskeleton, Ras signaling pathway, 
PI3K-Akt signaling pathway, MAPK signaling pathway, 
and other pathways, which are associated with striated 
muscle tissue development, muscle tissue development, 
muscle system process, muscle organ development, and 
other functions.

4.	 Prognosis-related genes with differential expression

Table  2 shows that the 23 prognosis-related genes 
significantly associated with OS survival prognosis 
(obtained using survival analysis) were GMDS, IRX5, 
ARHGAP44, MAFK, JTB, FKBP11, LGR6, TANGO2, 
PFKFB3, ADAMTS10, COL5A2, SDF2L1, KLHL17, 
C1QTNF1, ITGB5, CORT, PLCB4, KLF4, CTSK, CST3, 
QPRT, KLHL41, and GZMA. (Additional file  1: Fig. 
S2 illustrates the prognostic results for 23 genes these 
genes.)

5.	 Constructing a prognostic signature

For the identification of the 23 prognosis-related genes 
significantly associated with OS prognosis, we used the 
LASSO method (the horizontal axis represents the value 
of the independent variable lambda, and the vertical 
axis represents the coefficient of the independent vari-
able) to construct a prognosis prediction signature based 
on Cox regression. As shown in Fig.  4A and B, the sig-
nature showed optimal performance when the lambda 
value was the lowest (lambda.min = 0.0501). The signa-
ture considered 15 genes significantly associated with OS 
prognosis, namely GMDS, ARHGAP44, MAFK, FKBP11, 
TANGO2, PFKFB3, COL5A2, SDF2L1, KLHL17, ITGB5, 
CORT, PLCB4, CST3, KLHL41, and GZMA  (Riskscore 

Fig. 2  Analysis of variance. A The differential volcano plot, with red dots representing upregulation and blue dots representing downregulation. B 
The heatmap: differential gene expression heatmap, where different colors represent expression trends in different tissues. Due to the large number 
of differential genes, the 50 up-regulated genes and 50 downregulated genes with the largest differential change are shown here, respectively
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= (− 0.2954)*GMDS + (​0.0​663​)*A​RHG​AP44 + (0.3571)
*MAFK + (0.2515)*FKBP11 + (− 0.1417)*TANGO2 + (0
.0707)*PFKFB3 + (0.0331)*COL5A2 + (− 0.4538)*SDF2
L1 + (0.0809)*KLHL17 + (− 0.0425)*ITGB5 + (0.3171)*
CORT + (0.0653)*PLCB4 + (− 0.0234)*CST3 + (0.0432)*
KLHL41 + (− 0.0109)*GZMA).). The risk score for each 
patient was calculated in this study. We used the "sur-
vminer" R package to obtain the median critical point for 
each patient and divided the patients into high-risk and 
low-risk groups, plotting the Riskscore from low to high 
scatter plots (Fig. 4C), with different colors representing 
different expression groups. Figure 4E shows the scatter 
plot distribution of survival time and survival status cor-
responding to different sample Riskscores, alived samples 
are more distributed in the high-risk group. Figure  4F 
presents the expression heatmap of the 15 prognostic 

genes. Figure 4D shows the distribution of Kaplan–Meier 
survival curves for the risk signature in the target data-
set, in which the different groups were tested using the 
log-rank method. The Kaplan–Meier survival curves 
showed a poorer overall survival in the high-risk group, 
as compared to that in the low-risk group. The predictive 
signature developed using the 15 genes served as a risk 
factor. In addition, Fig. 4G shows that in the ROC analy-
sis, the prognostic characteristics of the 15 genes showed 
good predictive power in the 5-year overall survival 
(AUC = 0.891, 95% CI (0.822–0.961)).

6.	 Construction of the ceRNA network

Fifteen genes from the prognostic signature were 
imported into the ENCORI database (http://​starb​ase.​

Fig. 3  Enrichment analysis. A The enrichment results of KEGG pathway of differentially upregulated genes; B GO BP enrichment results of 
differentially downregulated genes; C KEGG pathway enrichment results of regulated genes; D GO BP enrichment results of differentially 
downregulated genes. The functional enrichment results are from R package ClusterProfiler (version: 3.18.0). The larger the value is, the smaller the 
fdr value, the circle size represents the number of enriched genes, and the larger the number of circles

http://starbase.sysu.edu.cn/
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sysu.​edu.​cn/) to predict the upstream miRNAs of the 
mRNAs, while satisfying the miRanda, miRma, and 
TargetScan database indexes. Twenty-five miRNAs 
were identified (Fig. 5A), which were then used for con-
structing the mRNA-miRNA network (Fig.  5B). The 
downloaded dataset GSE65071 was used to validate the 
expression of miRNAs in the network in normal ver-
sus OS groups (Fig.  5C). The prognostic significance of 
the miR-129-5p survival curve P < 0.05 (Fig.  5D) in the 
network was revealed after downloading the dataset 
GSE79181. Figure  6A shows that the upstream lncRNA 
of miR-129-5p was identified in the ENCORI database 
to construct the miRNA-lncRNA network. Figure 6B–D 
shows that the DFS (the time from randomization to dis-
ease recurrence or death) analysis of lncRNAs in the net-
work was performed using survival and survminer from 
R package to construct Kaplan–Meier curves (p values 
and HRs with 95% CIs were obtained using the log-rank 
test and univariate Cox proportional hazards regres-
sion; P < 0.05 was considered statistically significant); the 
results indicated prognostic significance for LINC01278, 
GAS1RR, and NBR2. The regulatory axes of LINC01278, 
GAS1RR, and NBR2/miR-129-5p/FKBP11 in OS were 
constructed according to the ceRNA network theory 
(Fig. 7).

7.	 Experimental validation of dual luciferase reporter 
gene

Because NBR2 had the highest HR, indicating the high-
est prognostic relevance, NBR2 was prioritized.

	7.1.	 Regulation of lncRNA NBR2 by miR-129-5p

Figure 8A shows that miR-129-5p could bind to wild-
type NBR2, but not to mutant NBR2. The difference was 
found to be statistically significant (P < 0.05).

	7.2.	 Regulation of FKBP11 by miR-129-5p

Figure  8B shows that miR-129-5p can bind to the 3’ 
UTR of wild-type FKBP11, but not to that of mutant 
FKBP11. The difference was statistically significant 
(P < 0.05).

8.	 Predictive performance of FKBP11 in OS

As demonstrated in Fig.  9A, the risk score for each 
patient was calculated in this study. "survminer" was 
used to determine the median critical point, categorize 
the patients into high-risk and low-risk groups, and plot 
the Riskscore from low to high, with different colors rep-
resenting different expression groups. Figure  9B shows 
the scatter plot distribution of survival time and survival 
status corresponding to the Riskscore of each sample. 
Figure  9C shows the expression heatmap of FKBP11. 
Figure 9D shows the distribution of FKBP11 in Kaplan–
Meier survival curves, in which the different groups were 
examined using the log-rank method. The Kaplan–Meier 
survival curves showed that, compared with that in the 
low-risk group, overall survival was poorer in the high-
risk group. FKBP11 as a risk factor.

Moreover, as shown in Fig. 9E, in the ROC analysis, the 
prognostic characteristics of FKBP11 indicated its pre-
dictive ability, with AUC values of 0.6 or greater, in over-
all survival in OS at 1, 3, and 5 years.

Discussion
OS is common in adolescents and is a highly aggressive 
form of cancer. In recent decades, the effective treatment 
of metastatic or recurrent OS has posed a major clinical 
challenge [1, 12]. The elucidation of the molecular mech-
anisms underlying OS metastasis is essential for treat-
ment and maximization of therapeutic efficacy. In recent 
years, RNA biomarkers specific for tumor proliferation, 
metastasis, invasion, and prognosis have been identified 
[13–15]. These RNA targets can help guide clinical treat-
ment decisions, predict life expectancy of patients, and 
help develop personalized therapy.

We first identified differentially expressed genes asso-
ciated with OS metastasis by biological information 
analysis; 232 differentially upregulated genes and 19 

Table 2  23 prognosis-related genes

Genes p value HR Low 95%CI High 95%CI

GMDS 0.013726983 0.43119358 0.220858897 0.841840227

IRX5 0.013579798 2.348226646 1.192173054 4.625308688

ARHGAP44 0.029119328 2.090143726 1.077861604 4.053118485

MAFK 0.004464551 2.771520694 1.372597422 5.596198007

JTB 0.00578881 2.626402252 1.322837763 5.214538762

FKBP11 0.020227156 2.221837732 1.132586526 4.35866293

LGR6 0.038790104 2.029029584 1.037119314 3.969611786

TANGO2 0.03161184 0.487898479 0.253578581 0.938742246

PFKFB3 0.013421832 2.374415766 1.196288588 4.71278443

ADAMTS10 0.021423401 2.205380033 1.124182863 4.326432334

COL5A2 0.021356548 2.199535545 1.124129331 4.303736663

SDF2L1 0.023096225 0.460567381 0.235944054 0.899036481

KLHL17 0.00407329 2.747512588 1.378589723 5.475759245

C1QTNF1 0.022420836 2.160126235 1.115187543 4.184179942

ITGB5 0.038617706 0.502602865 0.261873145 0.964625986

CORT 0.0113446 2.423601208 1.221368837 4.809229317

PLCB4 0.001317541 3.276967011 1.588340521 6.760837897

KLF4 0.01383551 2.364535135 1.191659667 4.691797967

CTSK 0.032371147 0.485569099 0.250536063 0.941091464

CST3 0.032500442 0.486446238 0.25128002 0.941698199

QPRT 0.027634833 0.469612275 0.239672042 0.920156088

KLHL41 0.024670211 2.196983231 1.105612504 4.365666359

GZMA 0.007153711 0.39699417 0.202493274 0.77831904

http://starbase.sysu.edu.cn/
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differentially downregulated genes were identified. Fol-
lowing this, we performed enrichment and PPI network 
analyses using these genes. The differentially expressed 
genes were implicated in the PI3K-Akt signaling pathway, 
Wnt signaling pathway, stem cell pluripotency signaling 
pathway, and other pathways closely related to tumors. 
After screening, we identified 23 genes that were closely 

related to the prognosis of patients with OS to further 
construct a prognostic signature of OS comprising 15 
genes using Cox regression based on the machine learn-
ing algorithm, LASSO. Among the 15 genes considered 
in this signature, GMDS, SDF2L1, KLHL17, ITGB5, 
CAT3 and KLHL41 were previously found to be associ-
ated with tumors. For example, a mutation in GMDS was 

Fig. 4  A prognostic model was constructed. A Select the lambda parameter lambda.min = 0.0501, the horizontal axis represents the value of 
the independent variable lambda, and the vertical axis represents the coefficient of the independent variable. B The relationship between partial 
likelihood deviation and log () is drawn using the LASSO Cox regression model. C Riskscore and survival time and survival status in the TARGET, 
where the top represents the Riskscore from low to high scatter ma, different colors represent different expression groups. E Represents the scatter 
map distribution of survival time and survival status of different samples risk score. F Represents the expression heat map of genes in the signature. 
D HR (High exp) represents the risk coefficient of high expression group relative to low expression group; if HR > 1 represents the risk factor, if HR < 1; 
95%CL represents the HR confidence interval; Median time represents the time of survival rate between high expression group and low expression 
group. G The ROC curve and AUC for different times of the risk model, where the higher the AUC value is, the stronger the predictive power of the 
model is



Page 9 of 13Liao et al. Journal of Orthopaedic Surgery and Research          (2022) 17:516 	

shown to induce the proliferation of colon cancer cells 
[16], SDF2L1 expression was found to be upregulated 
when nasopharyngeal carcinoma cell growth was pro-
moted in vitro [17], KLHL17 was shown to be associated 
with prostate cancer [18], ITGB5 was considered to serve 
as a prognostic biomarker for poor prognosis in gastric 
cancer [19], and KLHL41 expression was found to be sig-
nificantly enhanced in melanoma [20]. However, the pre-
sent study is the first to show the association between the 
expression of these genes and OS. The significant asso-
ciation of the expression of these genes with OS metas-
tasis and prognosis was elucidated in this study, and it is 
worthwhile to further explore the roles of these genes in 
OS.

The prognosis prediction signature of OS constructed 
using these 15 genes was utilized as a risk factor, with 
worse overall survival in the high-risk group compared 

with that in the low-risk group. Moreover, the signature 
showed good predictive ability in both 3-year over-
all survival (AUC = 0.845) and 5-year overall survival 
(AUC = 0.891) of OS and can be used as an independ-
ent prognostic marker for OS, which will be beneficial 
for its clinical prediction and treatment.

To further explore the upstream regulatory mecha-
nisms of this prognostic signature, we explored the 
upstream ncRNAs of 15 key genes in this signature. 
ncRNA is a class of RNA that does not usually encode 
a protein, but plays biological roles, such as transcrip-
tional regulation, RNA shearing and modification, 
and chromosome stabilization [21]. In addition to the 
involvement of ncRNA in the regulation of cancer ini-
tiation and progression, there exists targeted binding 
regulation between ncRNAs [10, 11]. These types of 
ncRNAs are referred to as ceRNAs, and the network 

Fig. 5  The mRNA-miRNA network construction. A The 15 genes from the prognostic model were imported into ENCORI database (http://​starb​ase.​
sysu.​edu.​cn/) to predict miRNA upstream of mRNA, which met miRanda, miRma, and TargetScan databases, identified 25 miRNA. B mRNA-miRNA 
network. C GSE65071 was downloaded to perform the verification of miRNA expression in the network in normal and OS. D GSE79181 was 
downloaded and found in the network a miR-129-5p survival curve of P < 0.05)

http://starbase.sysu.edu.cn/
http://starbase.sysu.edu.cn/
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formed based on their regulatory relationships is 
referred to as the ceRNA network [10, 11]. CeRNA net-
works comprise mRNAs, transcriptional pseudogenes, 
and lncRNAs that use miRNA response elements as 
binding targets to "talk" to each other and target and 
regulate expression levels [10]. Among these, lncR-
NAs act as miRNA sponges, competitively binding and 
repressing miRNAs [22, 23]. miRNAs target binding 
mRNAs to reduce protein synthesis [24].

Fig. 6  The miRNA-lncRNA network construction. A The starbase database (http://​starb​ase.​sysu.​edu.​cn/) predicts the lncRNA upstream of 
miR-129-5p, building the miRNA-lncRNA network. B–D DFS analysis of lncRNA in the network (time between randomization and disease recurrence 
or (death) in any cause), A value of p < 0.05 was considered statistically significant. The Kaplan–Meier curves, the p value and the hazard ratio (HR) 
with a 95% confidence interval (CI) were obtained by the logrank test and the univariate Cox proportional hazard regression

Fig. 7  The CeRNA Network

http://starbase.sysu.edu.cn/
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A growing body of evidence indicates that lncRNAs act 
on miRNAs to eventually target and regulate mRNAs, par-
ticipating in the induction, development, and metastasis 
of cancers [22, 23]. This constitutes the lncRNA/miRNA/
mRNA regulatory axis based on the ceRNA network. 

Based on extensive data and experimental validation, 
multiple researchers have proposed different axis control 
hypotheses in OS research that are beneficial for clinical 
therapeutics. For example, the lncRNA HCG11 was shown 
to promote OS invasion and metastasis by suppressing 

Fig. 8  The FKBP11 prognostic analysis. A Gene expression and survival time and survival status in TARGET, where the top represents the gene 
expression from low to high scatter pattern, different colors represent different expression groups. B Represents the distribution of survival time 
and survival status of gene expression in different samples. C Represents the expression heat map of the gene. D The distribution of the KM survival 
curve of this gene in TARGET, in which different groups were tested by log rank; HR (High exp) represents the risk coefficient of high expression 
group versus low expression group; if HR > 1 represents the risk factor, if HR < 1; 95%CL represents the HR confidence interval; Median time 
represents the time between the survival rate of high expression group and low expression group. E The ROC curve and AUC at different times, 
where the higher the AUC value, the stronger the predictive power of the gene
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miR-1245b-5p and upregulating PKP2 expression [25], and 
lncRNA TUG1 was shown to promote OS cell prolifera-
tion and invasion by acting as a ceRNA for miR-377-3p to 
upregulate ezrin expression [26].

In this study, we obtained 25 miRNAs closely associ-
ated with the prognostic signature and constructed the 
first FKBP11-related ceRNA network regulatory axis 
for OS. Bioinformatics analysis revealed that NBR2 and 
FKBP11 possess similar miR-129-5p-binding sites, and 
the miR-129-5p suppresses the progression of tumors, 
including OS [27, 28]. The results of the luciferase 
reporter gene experiments showed that both NBR2 and 
FKBP11 were physically associated with miR-129-5p. 
Predictive performance testing using FKBP11 in OS 
showed that FKBP11 is a significant risk factor in OS, 
and high FKBP11 expression predicts poor prognosis. 
These findings suggest that NBR2 promotes FKBP11 
expression, at least in part, by acting as a sponge for miR-
129-5p, thereby promoting OS progression. These com-
ponents form a ceRNA network in OS. We attempted to 
identify ncRNAs included in the effective OS prognostic 
signature to further understand the mechanisms underly-
ing OS development and progression.

Therefore, the prognostic signature of OS and the 
hypothesis of regulatory axis mechanism developed in 

this study have a significance in research, and the findings 
may provide a direction for investigations on the patho-
logical mechanism underlying OS development and pro-
vide candidate targets for clinical diagnosis, treatment, 
and prognosis prediction. However, the specific signaling 
pathways and mechanistic stability need to be explored 
and validated using data from subsequent studies.

Conclusion
Overall, in this study, we developed an effective prog-
nostic signature related to OS metastasis using bioin-
formatics and dual luciferase reporter gene experiments 
and constructed a ceRNA network-based regulatory 
axis for query ncRNAs, which helped identify candidate 
biomarkers for clinical diagnosis and treatment, drug 
research, and prognostic prediction. The findings provide 
a direction for research on the mechanisms underlying 
the occurrence and development of OS.
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