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Abstract 

Background:  Osteoarthritis, a common degenerative disease of articular cartilage, is characterized by degenera-
tion of articular cartilage, changes in subchondral bone structure, and formation of osteophytes, with main clinical 
manifestations including increasingly serious swelling, pain, stiffness, deformity, and mobility deficits of the knee 
joints. With the advent of the big data era, the processing of mass data has evolved into a hot topic and gained a solid 
foundation from the steadily developed and improved machine learning algorithms. Aiming to provide a reference 
for the diagnosis and treatment of osteoarthritis, this paper using machine learning identifies the key feature genes of 
osteoarthritis and explores its relationship with immune infiltration, thereby revealing its pathogenesis at the molecu-
lar level.

Methods:  From the GEO database, GSE55235 and GSE55457 data were derived as training sets and GSE98918 data as 
a validation set. Differential gene expressions of the training sets were analyzed, and the LASSO regression model and 
support vector machine model were established by applying machine learning algorithms. Moreover, their inter-
section genes were regarded as feature genes, the receiver operator characteristic (ROC) curve was drawn, and the 
results were verified using the validation set. In addition, the expression spectrum of osteoarthritis was analyzed by 
immunocyte infiltration and the co-expression correlation between feature genes and immunocytes was construed.

Conclusion:  EPYC and KLF9 can be viewed as feature genes for osteoarthritis. The silencing of EPYC and the overex-
pression of KLF9 are associated with the occurrence of osteoarthritis and immunocyte infiltration.
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Background
Osteoarthritis (OA), a chronic joint disease prevalent 
among middle-aged and elderly people, is featured with 
degenerative changes and destructive and progressive 
osteogenesis of articular cartilage and has long been 
proven to be associated with genetic factors. About 250 

million people worldwide are now troubled by the dis-
ease, which usually affects multiple joints throughout 
the body, with the knee joints being the most common, 
followed by the wrist and hip joints [1]. Its etiology has 
not yet been identified, but many risk factors, includ-
ing heredity, sex, joint injury, age, and obesity, should 
be taken into account [2]. As the global population ages 
and the number of obese people rises, joint injury is 
becoming increasingly common. Some scholars suggest 
that mechanical damage to joints plays a leading role 
in the occurrence and progress of OA [3], while others 
describe that genetic factors are more relevant [4]. OA 
is clinically manifested as gradual aggravated joint pain, 
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swelling, stiffness, dysfunction, or even disability in some 
severe cases. Its diagnosis predominantly resorts to imag-
ing changes. First-line drugs containing nonsteroidal 
anti-inflammatory drugs, paracetamol, and glucocorti-
coids, and joint replacement treatment mainly focus on 
relieving pain and mobility deficits and other symptoms 
instead of curing the disease directly [5–7]. For this rea-
son, it is of great importance to find genetic biomarkers 
for OA to the benefit of its diagnosis and treatment.

Machine learning (ML) is an interdiscipline involving 
multiple subjects. As the core of artificial intelligence 
and data science, it focuses on how computers simulate 
or fulfill human learning behaviors so as to acquire new 
knowledge or skills and reorganize existing knowledge 
structures to constantly improve their performance. 
Given the big data era, ML is widely deployed in bio-
medical fields such as genomics, proteomics, microar-
rays, systems biology, evolution, and text mining [8–10]. 
Proposed by Tibshirani [11] in 1996, the LASSO algo-
rithm (least absolute shrinkage and selection opera-
tor) obtains a refined model by constructing a penalty 
function. Its basic philosophy is to minimize the sum of 
square residuals under the constraint that the sum of the 
absolute values of regression coefficients is less than one 
constant, thus producing some regression coefficients 
that are strictly equal to zero and a model that has strong 
explanatory power. LASSO regression has the charac-
teristic of screening variables and adjusting complexity 
while fitting the generalized linear models. Therefore, we 
can make models and predictions with it, irrespective of 
continuous, binary or multivariate discrete target factor 
variables. Support vector machine (SVM) is extensively 
adopted in pattern recognition, ML, and other fields. 
Support vector machine recursive feature elimination 
(SVM-RFE), a sequential backward selection algorithm 
based on SVM’s principle of maximum margin, trains the 
samples through the model, marks each feature, and rates 
the scores with the features of the lowest score being 
removed and the features left being used for training the 
model again, thereby performing iteration and finally 
selecting the desired features as supposed [12, 13]. Work-
ing with a mechanism integrating three parts, namely 
data input and SVM-RFE model construction, SVM clas-
sifier training and cross-validation, and error rate and 
accuracy rate calculation and mapping, SVM-RFE can 
better seek out feature genes of OA, consequently bet-
tering its diagnosis and treatment. The feature genes 
selected through the LASSO regression model and SVM-
REF model shall register higher reliability.

In recent years, immune infiltration has become more 
widely exercised in bioinformatics analysis, and there 
is evidence proving that cartilage cells in OA patients 
release specific antigens that trigger the activation of 

immune responses. There are a large number of immu-
nocytes involved in OA, including innate immunity and 
acquired immunity, making anti-cytokines an ineffective 
treatment of the disease in question [14]. In this context, 
it is essential to elucidate the infiltration of immunocytes 
in the synovial membrane of OA patients and the genes 
involved in their regulation.

Based on the machine learning algorithm in bioinfor-
matics, this paper aims to render a reference for revealing 
the complex pathogenesis of OA and developing more 
new markers for its diagnosis by exploring the feature 
genes related to its pathogenesis with R language tools 
and establishing the relationship between the genes and 
immunocyte infiltration.

Data and methods
Data download and integration
Three data sets GSE55235 and GSE55457 (respectively 
with 10 normal synovial tissues and 10 OA synovial tis-
sues) and GSE98918 (with 12 normal synovial tissues 
and 12 OA synovial tissues) were downloaded from the 
GEO database [15, 16]. In addition, R language software 
was installed. Data integration and batch correction of 
the first two data sets were performed through the ‘sva’ 
package [17] in the R language to get integration results 
as training sets (20 OA synovial tissue samples and 20 
normal synovial tissue samples). Meanwhile, GSE98918 
[16] was collated to deliver a validation set.

Screening of differential genes
The combined training set data were read in R language 
and divided into the OA group and the normal group 
(control group). The expression amounts of genes in 
each group were extracted, and the screening threshold 
value was set as |Log2FC|> 1.5, adjust. p value < 0.05, and 
a significant difference if both satisfied. Subsequently, 
the ‘limma’ package [18] was loaded to analyze the dif-
ferences as per the above filter conditions and to output 
an analysis result, and the ‘sheetmap’ [19] and ‘ggplot2’ 
packages [20] were operated to draw heat map and vol-
cano plot, respectively.

Enrichment analysis of genes
GO, KEGG, and DO enrichment analyses on differential 
genes were conducted, respectively. The filter conditions 
for the enrichment analysis were defined as follows: p 
value < 0.05, q value < 0.05, and enrichment results with 
significance if both satisfied. The ‘org.Hs.eg.db’ package 
[21] was run for gene ID conversion, the ‘clusterProfiler’ 
package [22, 23] for enrichment analysis results, and the 
‘enrichplot’ [24] and ‘ggplot2’ packages for results visuali-
zation and bubble and bar charts mapping. At last, GSEA 
enrichment analysis on all genes was carried out with the 
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first five enrichment pathways being saved and plotted 
for visualization.

Screening of feature genes
The ‘glmnet’ package [25] was subject to construct the 
LASSO regression model using differential genes, and the 
SVM-RFE model was built by loading ‘e1071’ [26], ‘caret’ 
[27], and ‘kernlab’ packages [28]. Based on the selected 
genes from the two models output and saved, the inter-
sected genes were marked as feature genes, which were 
visualized by a Venn diagram drawn by the ‘venn’ pack-
age [29].

Drawing of subject’s ROC curve
The ‘pROC’ package [30] was employed to plot the ROC 
curve of feature genes in the training sets. As AUC > 0.9, 
the genes could be deemed with higher accuracy in diag-
nosing disease.

Verification of model results by the validation set
The expression of the selected feature genes in the vali-
dation set was analyzed using the ‘limma’ package, and 
the case of p value < 0.05 suggested that there was a dif-
ference between the expression of the genes in the OA 
group and those in the normal group. And the feature 
genes were plotted to obtain the ROC curve in the valida-
tion set, which was compared with the results obtained 
in the training set.

Analysis of immunocyte infiltration
The abundance of various immunocyte types in the sam-
ples was computed through the ‘CIBERSORT’ algorithm 
[31]. First, the source code of CIBERSORT was cre-
ated, and the expression quantity of marker genes of 22 
immunocytes was prepared. Next, immunocyte infiltra-
tion analysis was performed for training set data, and p 
value < 0.05 was defined as the condition for filtering the 
analysis results being saved afterward. Then, the con-
tents of immunocytes in samples were presented by a bar 
chart, and the correlation heat map was drawn using the 
‘corrplot’ package [32]. Last, the ‘vioplot’ package [33] 
was utilized to draw a violin plot, which displays immu-
nocytes showing the disparity in the OA group and nor-
mal group.

Correlation analysis of feature genes and immunocytes
The ‘reshape2’ package [34] was adopted to sort out the 
gene expression data, obtain the expression quantity of 
feature genes, and circulate immunocytes with a correla-
tion filtration condition set as p < 0.05. Furthermore, with 
a view to visualize the analysis results, scatter diagrams 
and lollipop diagrams for the correlation were plotted 

using the ‘ggpubr’ package [35] and ‘ggExtra’ package 
[36].

Results
Screening of differentially expressed genes
We screened differential genes and found that 122 genes 
(including 48 up-regulated genes and 74 down-regulated 
genes) showed differences in expression quantity with a 
gap of over 2 times between the OA and normal groups 
(Fig. 1a,b).

Gene enrichment results
Enrichment analysis results of differential genes
According to the gene ontology (GO) enrichment results, 
the main biological process (BP) involved by differen-
tial genes covers reactions to lipopolysaccharides, ster-
oid hormones, and bacterial-derived molecules; cellular 
component (CC), in which the products of differential 
gene function, is mainly consisted of extracellular matrix 
(ECM), membrane rafts, membrane microdomain, etc.; 
and the molecular function (MF) of differential gene 
products encompasses receptor ligand activity, signal 
receptor activator activity, and cytokine activity and so 
on (Fig. 2a). It is derived from the KEGG pathway enrich-
ment analysis that differential genes were largely involved 
in the signaling pathway of interleukin 17 (IL-17), fol-
lowed by other pathways like herpesvirus infection asso-
ciated with Kaposi sarcoma, rheumatoid arthritis, and 
tumor necrosis factor (TNF) (Fig.  2b). Moreover, the 
disease ontology (DO) analysis indicates that differen-
tial genes were concentrated in cell-type benign tumors, 
preeclampsia, lymphocytic leukemia, and osteoarthritis 
(Fig. 2c).

Analysis results of gene enrichment set
The GSEA-GO analysis found that the gene set of normal 
synovial tissues had DNA-binding transcription activator 
activity and that the product was functioning in nuclear 
speckles and was primarily engaged in RNA splicing con-
trol (Fig. 3a). The main products of the OA synovial tis-
sue gene set played its role in binding antigen antibodies 
in the nuclear speckles (Fig. 3b).

The GSEA-KEGG analysis showed that the gene set of 
normal synovial tissues was mainly involved in signal-
ing pathways such as adipocytokines, MAPK, and NOD 
receptors (Fig. 3c), whereas the gene set of OA synovial 
tissues substantially participated in signaling pathways of 
allogeneic rejection, lysosomal, and oxidative phospho-
rylation and other pathways (Fig. 3d).

Screening of feature genes
The LASSO regression model was established for the train-
ing sets, and the regression complexity was adjusted by the 
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Fig. 1  Screening of differentially expressed genes. a Volcano map of DEGs; red represents up-regulated differential genes, black represents no 
significant difference genes, and green represents down-regulated differential genes. b The thermal map of expression level of different genes in 
every synovial tissue sample, the redder the color, the higher the expression, the bluer the color, the lower the expression
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parameter λ, in which the greater the parameter, the greater 
the penalty for the linear model with more variables, hence 
obtaining a model with fewer variables. On such a basis, we 
screened out 14 feature genes with diagnostic significance 
(namely KLF9, APOLD1, TIPARP, EPYC, JUN, PPP1R15A, 
FKBP5, RND1, CCZ1B, ZIC1, MGC12488, TAC1, WIF1, 
and ERAP2) (Fig. 4a). To further construct the SVM-RFE 
model, two feature genes with diagnostic relevance (KLF9 
and EPYC) were selected (Fig.  4b). Integrating the two 
regression models (Fig.  4c), we observed that KLF9 and 
EPYC can be used as feature genes of OA.

Drawing of ROC curve
Through plotting the ROC curves of KLF9 and EPYC, we 
noted that KLF9 (AUC = 0.992, CI = 0.97–1.00) and EPYC 
(AUC = 0.990, CI = 0.96–1.00) were relatively more sensi-
tive in the diagnosis of OA (Fig. 5).

Results of model validation
The difference between the expression quantities of KLF9 
and EPYC was analyzed in the validation set, suggesting 
that KLF9 was expressed at a low level in OA synovial tis-
sue, while EPYC was expressed at a high level, which was 
statistically significant (p value < 0.05) (Fig.  6). Concur-
rently, observed from the ROC curves drawn for both 
genes in the validation set, the two genes were found to be 
sensitive in diagnosing OA (AUC > 0.9) (Fig. 5), which was 
consistent with the results of the training sets.

Results of immune infiltration analysis
The expressions of all immunocytes in each sample are 
shown in the bar chart (Fig.  7a). According to the analy-
sis of the correlation between immunocytes, there was a 
positive correlation (correlation coefficient R > 0.5) between 
resting mast cells and regulatory T cells, plasma cells and 
memory B cells, γδT cells and activated CD4+ memory T 
cells, immature CD4

+T cells and activated CD4+ memory 
T cells, resting NK cells and immature CD4

+T cells, eosin-
ophils and activated NK cells, and resting memory CD4

+T 
cells and activated NK cells, as well as a negative correla-
tion (correlation coefficient R <  − 0.5) between immature B 
cells and memory B cells, and between activated mast cells 
and resting mast cells.

The correlation between other immunocytes is exhibited 
in the heat map (Fig.  7b). There were five immunocytes 
expressed differently in OA and normal synovial tissues, of 
which resting memory CD4

+T cells, activated NK cells, and 
activated mast cells were low expressed in OA synovium (p 

value < 0.01), while regulatory T cells and resting mast cells 
were highly expressed (Fig. 7c).

From the co-expression correlation analysis of fea-
ture genes and immunocytes, it was revealed that KLF9 
was positively correlated with the expressions of resting 
memory CD4

+T cells (R = 0.67, p value < 0.01), activated 
mast cells (R = 0.67, p value < 0.01), and activated NK 
cells (R = 0.39, p value = 0.012), but negatively correla-
tive with the expressions of CD8

+T cells (R = − 0.32, p 
value = 0.041), plasma cells (R = − 0.38, p value = 0.016), 
resting mast cells (R = − 0.51, p value < 0.01), and regula-
tory T cells (R = − 0.56, p value < 0.01) (Figs. 8, 10a). EPYC 
was positively associated with the expressions of resting 
mast cells (R = 0.66, p value < 0.01), plasma cells (R = 0.45, 
p value < 0.01), memory B cells (R = 0.45, p value = 0.01) 
and regulatory T cells (R = 0.37, p value = 0.019), while 
it was negatively correlated with the expressions of acti-
vated NK cells (R =  − 0.46, p value < 0.01), resting CD4

+T 
memory T cells (R =  − 0.53, p value < 0.01), and activated 
mast cells (R =  − 0.57, p value < 0.01) (Figs. 9, 10b).

Discussion
OA with the most common joint disease incidence 
among the elderly causes heavy public health burdens 
but cannot be fully cured. Since articular cartilage with 
the function of reducing friction is the most degenerative 
part once OA occurs, reconstructing the complete artic-
ular cartilage is expected to be a radical cure for OA in 
replacement of the current prevalent treatment of articu-
lar replacement.

There are two main types of enrichment analysis 
methods: general enrichment based on the number of 
differential genes and functional GSEA based on gene 
ranking. The former focuses on genes with large differ-
ences, without considering the genes with fewer differen-
tial expressions but significant biological significance in 
the pathopoiesis of OA, which can be compensated by 
the latter. Lipopolysaccharides have many mechanisms in 
the development of OA and are more significantly asso-
ciated with the disease in obese populations. It can ini-
tiate innate immune responses with toll-like receptor 4, 
leading to systemic inflammatory responses and damage 
to joint structures [37], which is in accord with our GO 
analysis results. IL-17 plays a key role in the pathogen-
esis of OA and is closely related to pain. Up-regulation 
of many gene products involved in cell activation, includ-
ing human macrophages, can also increase the produc-
tion of NO in chondrocytes and induce apoptosis in the 

Fig. 2  Gene ontology (GO), disease ontology (DO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of DEGs. a GO 
enrichment analysis, where the horizontal axis represents the number of DEGs under the GO term. b DO enrichment analysis, where the horizontal 
axis represents the number of DEGs under the DO term. c KEGG enrichment analysis, where the horizontal axis represents the number of DEGs 
under the KEGG term

(See figure on next page.)
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Fig. 2  (See legend on previous page.)
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progression of the disease discussed here [38, 39]. Chon-
drocyte apoptosis is one of the principal causes of OA, 
and the death of chondrocytes in OA cartilage is primar-
ily attributed to autophagy defect, mitochondrial dys-
function and increased oxidative stress. The lysosome is 
highly related to autophagy, and the loss of its function 
leads to the accumulation of dysfunctional mitochondria 
and then participates in the formation of OA [40], which 
coincides with the findings of our GSEA enrichment 
analysis and also proves the accuracy of our study. Pur-
suant to our DO enrichment analysis, a high concentra-
tion of genes with differential expressions and cell-type 
benign tumors may be of limited clinical significance. 
However, according to the literature, studies have shown 

that in OA there are 12q13-15 chromosome mutations 
pertain to benign mesenchymal tumors [41], which may 
offer a new perspective on how OA progresses.

Oxidative stress and reactive oxygen species (ROS) have 
been demonstrated to be strongly associated with the 
occurrence of OA. When chondrocytes, synoviocytes, 
and osteoblasts are subject to constant external mechani-
cal stress, they can produce excessive pro-inflammatory 
mediators to break the pro-oxidative/antioxidant balance, 
hence the degradation of ECM [42]. As a member of the 
KLFs family, KLF9 (Kruppel-like factor 9) plays a signifi-
cant role in oxidative stress responses. Studies have sug-
gested that Nrf2 stimulates the expression of KLF9 and 
inhibits the expression of several important antioxidant 

Fig. 3  Gene GO and KEGG enrichment analysis of all normal genes and all OA genes. a GSEA-GO enrichment analysis on all normal genes, saved 
the top five enriched pathways. b GSEA-GO enrichment analysis on all OA genes, saved the top five enriched pathways. c GSEA-KEGG enrichment 
analysis on all normal genes, saved the top five enriched pathways. d GSEA-KEGG enrichment analysis on all OA genes, saved the top five enriched 
pathways
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Fig. 4  Screening of diagnostic markers. a Least absolute shrinkage and selection operator (LASSO) logistic regression algorithm to screen 
diagnostic markers. b Support vector machine–recursive feature elimination (SVM-RFE) algorithm to screen diagnostic markers. c Venn diagram 
shows the intersection of diagnostic markers obtained by the two algorithms

Fig. 5  ROC curve of KLF9 (a) and EPYC (b) genes in the training and validation  set
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enzymes such as thioredoxin reductase 2, resulting in the 
increase in KLF9-dependent ROS and ultimately carti-
lage degradation [43]. The KEGG pathway enrichment 
analysis showed that differentially expressed genes in OA 
were mainly involved in the IL-17 signaling pathway, and 
IL-17 could also impel the process of oxidative stress, so 
further investigation is needed to see if there is a poten-
tial link between OA and IL-17.

Dermatan sulfate proteoglycan (Epiphycan, EPYC), a 
protein-coding gene and a member of the small leucine-
rich proteoglycans (SLRP) family, consists of seven exons 
and regulates fibrillogenesis by interacting with collagen-
ous fibrils and other ECM proteins. EPYC is involved 
in cartilage formation in normal synovial tissues, and 
OA occurs with age in mice with EPYC knockout [44, 
45]. In this study, EPYC was overexpressed in OA, pos-
sibly because the destructed articular cartilage led to 
the increase in EPYC production by chondrocytes in an 
attempt to repair the damaged ECM. Considering that 
EPYC is a member of the SLRPS family, whose effects 
on cartilage and the pathogenesis of OA are various and 
complex, including changes in extracellular collagen 
networks and TGF-b signaling pathways, the regulation 
mechanism of EPYC in OA needs to be further eluci-
dated. Moreover, NSAIDS drugs, as the first-line treat-
ment for OA, have been proven effective in curbing the 
expression of EPYC in prostate cancer cells [46], but their 

effects on EPYC gene expression in OA articular chon-
drocytes should be further explored.

CIBERSORT score is widely and accurately used in 
gene expression profiling to quantify immune cell frac-
tion. The infiltration of immunocytes in OA synovial tis-
sues has been accepted by many scholars. CD4

+T cells, 
mast cells, and macrophages play an essential role in 
synovitis. The pathogenesis of activated IgE-dependent 
mast cells and mast cell-mediated tryptases in OA has 
been demonstrated [47], but there is no difference in the 
expression of mast cells themselves in OA synovial tis-
sues. In this study, the immune infiltration analysis herein 
showed that resting mast cells were highly expressed in 
OA synovium, while activated mast cells had low expres-
sion. We speculate that it may be ascribed to the fact 
that mast cells were not directly involved in the patho-
genic process of OA but indirectly caused the disease 
by mediating other proteases or histamine, and others. 
Nevertheless, the specific mechanism of mast cells in OA 
needs further research. Regulatory T cells (Tregs) play an 
important immunomodulatory part in many inflamma-
tory and autoimmune diseases and can inhibit osteoclasts 
and helper T cells to protect local articular cartilage from 
destruction [48–50]. Our experimental results signified 
that Tregs were infiltrated the OA synovial membrane, 
probably owing to the fact that the destruction of syno-
vial tissues may result in the reactive proliferation of 
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Fig. 6  Box diagram of difference analysis of the expression levels of KLF9 (a) and EPYC (b) in the validation set. The blue marks represent the 
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(See figure on next page.)
Fig. 7  Evaluation and visualization of immune cell infiltration. a Content of different immune cells in each sample. b Correlation heat map of 
22 types of immune cells. Red represents a positive correlation; blue represents a negative correlation. The darker the color, the stronger the 
correlation. c Violin diagram of the proportion of 22 types of immune cells. The red marks represent the difference in infiltration between the two 
groups of samples
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Fig. 7  (See legend on previous page.)
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Tregs, thereby inhibiting local inflammatory responses, 
which requires further verification by experiments.

This is not the first time that machine learning algo-
rithms have been applied to sort out genes for osteoar-
thritis. From past experiments, we believe that excessive 
differential genes due to low difference threshold have 
affected the accuracy of enrichment analysis and machine 
learning algorithms. Under such a circumstance, we tri-
pled the threshold for differential analysis, i.e., Log2FC 
was set to 1.5, which was supposed to be more accurate 
and relevant.

Conclusion
The analysis of the OA gene expression chip showed 
that silencing of KLF9 and overexpression of EPYC 
were highly relevant to the occurrence of OA, and the 
two genes could be taken as diagnostic feature genes of 
OA based on machine learning algorithms. In OA syn-
ovium, resting memory CD4

+T cells, activated NK cells, 
and activated mast cells were suppressed, while regula-
tory T cells and resting mast cells were overexpressed. 
KLF9 was positively correlated with CD4

+T cells, acti-
vated NK cells, and activated mast cells, but negatively 

Fig. 8  Correlation between KLF9 gene expression and different immune cells infiltrating
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correlated with CD8
+T cells, plasma cells, resting mast 

cells, and regulatory T cells. EPYC showed positive cor-
relations with plasma cells, resting mast cells and regu-
latory T cells, and negative ones with resting memory 
CD8

+T cells and activated mast cells.

In conclusion, we processed the chip expression data 
by computer, used machine learning algorithms to find 
out the diagnostic feature genes of OA, and explored 
their relationships with immunocytes, so as to provide 
a reference for the early diagnosis and treatment of OA.

Fig. 9  Correlation between EPYC gene expression and different immune cells infiltrating
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