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A new biomechanical classification system 
for split fractures of the humeral greater 
tuberosity: guidelines for surgical treatment
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Abstract 

Background:  Split fractures of the humeral greater tuberosity (HGT) are common injuries. Although there are numer-
ous surgical treatments for these fractures, no classification system combining clinical and biomechanical characteris-
tics has been presented to guide the choice of fixation method.

Methods:  We created a standardised fracture of the HGT in 24 formalin-fixed cadavers. Six were left as single-frag-
ment fractures (Group A), six were further prepared to create single-fragment with medium size full-thickness rotator 
cuff tear (FT-RCT) fractures (Group B), six were cut to create multi-fragment fractures (Group C), and six were cut to 
create multi-fragment with FT-RCT fractures (Group D). Each specimen was fixed with a shortened proximal humeral 
internal locking system (PHILOS) plate. The fixed fractures were subjected to load and load-to-failure tests and the 
differences between groups analysed.

Results:  The mean load-to-failure values were significantly different between groups (Group A, 446.83 ± 38.98 N; 
Group B, 384.17 ± 36.15 N; Group C, 317.17 ± 23.32 N and Group D, 266.83 ± 37.65 N, P < 0.05). The load-to-failure 
values for fractures with a greater tuberosity displacement of 10 mm were significantly different between each group 
(Group A, 194.00 ± 29.23 N; Group B, 157.00 ± 29.97 N; Group C, 109.00 ± 17.64 N and Group D, 79.67.83 ± 15.50 N; 
P < 0.05). These findings indicate that fractures with a displacement of 10 mm have different characteristics and 
should be considered separately from other HGT fractures when deciding surgical treatment.

Conclusions:  Biomechanical classification of split fractures of the HGT is a reliable method of categorising these 
fractures in order to decide surgical treatment. Our findings and proposed system will be a useful to guide the choice 
of surgical technique for the treatment of fractures of the HGT.
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Background
The humeral greater tuberosity (HGT) is the attach-
ment point of the rotator cuff, which is the axis of the 
shoulder and plays an important role in shoulder move-
ment. Proximal humeral fractures (PHFs) are the third 
most common fractures in elderly individuals, account-
ing for 5% of all fractures among such patients [1, 2]. In 
contrast, fractures of the HGT occur more frequently 
in younger patients with strong bones following 
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high-velocity trauma. These fractures are common and 
account for up to 20% of all PHFs [3, 4].

There are three classification systems that are rou-
tinely used to assess GT fractures; namely, the Neer, 
AO and morphological classification systems [5–7]. 
The Neer system classifies PHFs into four categories 
based on location: the GT, the lesser tuberosity, the 
humeral head or the humeral shaft if there is displace-
ment of > 1 cm or angulation of > 45. However, in 2005, 
Kim reported that isolated GT fractures have differ-
ent characteristics to other PHFs; thus, the treatment 
and classification of these fractures should be differ-
ent to that of other PHFs [8]. The AO system classifies 
GT fractures as non-displaced, displaced or associated 
with shoulder dislocation. Recent studies on split frac-
ture have focused mostly on morphological classifica-
tion. In 2014, Mutch proposed a classification system 
dividing GT fractures into three types: avulsion, split 
or depressed. Split fractures of the GT (Fig. 1) are the 
most common, accounting for 41% of all GT fractures. 
Yet, there is currently no classification system for split 
fractures of the HGT with rotator cuff tear (RCT) 
which considers the number of fragments.

Coexisting soft tissue lesions of greater tuberosity frac-
tures were discussed in several reports as being possible 
indications for surgical treatment and that might result in 
persistent late pain, shoulder dysfunction [9, 10]. Early in 
1996, Gary reported a non-union of the greater tuberos-
ity fracture concomitant with full-thickness rotator cuff 
tear and it was successfully treated with arthroscopy 
[11]. Gumina described 24 patients with missed greater 
tuberosity fractures, of which 11 (45.8%) had rotator cuff 
tears with the use of magnetic resonance imaging (MRI) 
for detecting soft tissue pathologies [12]. Moreover, Eran 
Maman reported rotator cuff tears were the most com-
monly diagnosed pathology of coexisting lesions with 
GT fractures, of which the supraspinatus was the most 
frequently involved tendon (36% of all pathologies). He 
believes that it is important to identify and repair pathol-
ogies concomitant with GT fractures [13].

Despite their high prevalence, coexisting Lesions 
have largely been ignored. There have been few clini-
cal guidelines on comminuted fractures or RCT in the 
context of fractures of the HGT. According to our clini-
cal data findings from January 2010 to January 2018 
(Fig.  2), such injuries have different shoulder func-
tion outcomes; particularly fragmented fractures or 
those combined with RCT. The present study sought 
to address the following questions: are there any sig-
nificant differences between fractures that are catego-
rised according to specific clinical features? What are 
the optimal treatments when these differences are 
considered? We created four cadaver models (Fig.  3), 

evaluated whether there are significant differences 
between the models and identified optimal operative 
treatments for each.

The aims of this study were to: (i) create four cadaver 
models from our long-term clinical data (Fig.  3); (ii) 
identify the different characteristics of each model and 
(iii) identify the optimal treatment for different types of 
fractures. The primary hypothesis was that biomechan-
ical classification of fractures of the HGT is a reliable 
system and can be used to guide the choice of surgical 
technique.

Fig. 1  Morphological classification of fractures of the HGT. Type I 
avulsion fractures exhibit small fragments of bone with a horizontal 
fracture line. Type II split fractures exhibit one large fragment with a 
vertical fracture line. Type III depressed fractures exhibit an inferiorly 
displaced fragment
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Methods
Specimen selection and preparation
This study was conducted in the Biomechanical and 
Anatomy Laboratory of the South-west Medical Uni-
versity, Sichuan, China. We selected donors whose fam-
ily had given written consent for the donation of their 
to science. Inclusion criteria were cadavers from Chi-
nese patients that had: (i) been soaking in the same for-
malin mixture for 6  months, (ii) full-grown and normal 
shoulder joints, (iii) no history of previous shoulder 

operations, (iv) no history and/or signs of previous frac-
ture, (v) a cadaveric age of less than 60 years and (vi) nor-
mal BMD. Exclusion criteria were: (i) history of diabetes 
or smoking, (ii) history of soft tissue injury in the AC or 
shoulder joint (e.g. osteoarthritis, shoulder instability or 
RCT) and (iii) incomplete specimens.

Bone density was assessed by X-ray (OSTEOCORE-3; 
Golden, China), and BMD was compared between the 
four groups using one-way analysis of variance (ANOVA) 
to ensure that there were no significant differences in 

Fig. 2  Clinical imaging findings of fractures of the humeral greater tuberosity. A X-ray image of a single-fragment fracture. B X-ray image of a 
multi-fragment fracture. C Computed tomography scan of a single-fragment fracture. D Computed tomography scan of a multi-fragment fracture. 
E Magnetic resonance image of a single-fragment fracture. F Magnetic resonance image of a single-fragment fracture with rotator cuff tear. G 
Magnetic resonance image of a multi-fragment fracture without rotator cuff tear. H Magnetic resonance image of a multi-fragment fracture with 
rotator cuff tear

Fig. 3  Sketch models of the four types of fracture of the humeral greater tuberosity. A Type I, single-fragment fracture. B Type II, single-fragment 
fracture with medium size full-thickness rotator cuff tear (FT-RCT). C Type III, multi-fragment fracture. D Type IV, multi-fragment fracture with 
medium size FT-RCT​
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BMD, which could affect the biomechanical results. 
Finally, 24 formalin-fixed (35% formaldehyde in alcohol; 
Da-pin chemical industry, Guangzhou, China) cadaver 
shoulder specimens (16 right and 8 left; 16 men and 8 
women) were used for this study.

To prepare the specimens, we resected all soft tissue 
from the scapula and humerus, retaining only the whole 
humerus and rotator cuff tendon (Fig.  4A). Parts of the 
supraspinatus and tendon of > 5 cm in length were pre-
served at the bony insertion. We created a standardised 
Type I GT fracture at an angle of 50° to the shaft of the 
humerus using a thin-blade reciprocating saw (Guoke, 
China) as previously described [14] (Fig.  4B). Six mod-
els were left as Type I fractures (Group A), while 12 were 
further cut on both sides of the single-fragment to create 
multi-fragment fractures (Fig.  4C). Finally, we chose six 
single- and six multi-fragment models to be used to cre-
ate models with medium size (i.e. 1–3  cm according to 
the Cofield Classification), full-thickness (FT) RCT [15]. 
The thickness and width of the supraspinatus were meas-
ured using digital callipers, and the supraspinatus foot-
print area was marked and measured.

Fixation configurations
We chose to modify a small locking plate (a shortened 
PHILOS plate, HS-A-BU0173-029, China; Fig. 4D) to fix 
the fractures, in line with guidelines for the surgical treat-
ment of displaced fractures of the HGT [16]. All opera-
tions were performed by the senior author (Shijie-Fu). 
The shortened PHILOS plate was prepared by cutting 
off the three-hole screw on the plate shaft using strong 
scissors (Guoke, China). Then, fragments were accurately 
fixed using K-wires. The PHILOS plate was fixed at 5 mm 
below the top of the GT and the medial intertubercular 
sulcus, according to the protocol of Ali-jabran [17]. We 
fixed the medium size (1.5-cm) FT-RCT of Groups B and 
D by suturing both sides of the supraspinatus (Fig.  4F) 
using Ethicon 5#, a high-polymer polyethylene (Johnson, 
USA).

Load test
Specimens were placed in a special clamp (Fig.  5) to 
ensure stability during the load test. All tests were 
performed at room temperature, and the surface of 
the prepared-modal was kept constantly moist with 

Fig. 4  Diagram showing the preparation of specimen models. A The whole humerus and rotator cuff tendon were retained. B A standardised 
greater tuberosity fracture. C The single-fragment fracture was cut into multiple fragments. D Comparison of the PHILOS and shortened PHILOS 
plates. E Standardised fixation of single-fragment fractures. F Both sides of the supraspinatus were sutured using Ethicon 5# Johnson suture 
material. G A medium size, full-thickness rotator cuff tear was created. H Fixation of multi-fragment fractures
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isotonic saline. One side of the specimen was fixed to 
the biomechanical testing machine (Bose Electro Force 
3520-AT, USA), and the other was fixed to the upper 
part of the testing machine (Fig.  5). During mechani-
cal tests, the supraspinatus was fixed at an angle of 
90° abduction. A superior preload of 50  N was then 
applied out to assess the time effect, stress relaxa-
tion and stability of specimen fixation. The distance 
at 5 N was set as the initial reference (starting point). 
The electrodynamic testing machine applied a load at 
a constant speed of 5 N/s. The load test was repeated 
10 times with intervals of 3 min to avoid stress fatigue.

Load‑to‑failure test
Tests to assess ultimate failure load (N) were per-
formed at a constant speed of 1 mm/min in the supe-
rior-inferior direction, and the mode of failure was 
recorded. We also recorded results for fractures with 
3, 5 and 10-mm displacement of the HGT. Failure was 
defined as RCT rupture, internal fixation failure or 
complete dislocation of HGT.

Statistical analysis
The Statistical Package for the Social Sciences (SPSS) 
19.0 software (Chicago, IL, USA) was used for all statis-
tical analyses. All data are presented as mean ± standard 
deviation ( x ± s ). Homogeneity of variance was evaluated 
using the Shapiro–Wilk test. One-way ANOVA was used 
for multiple comparisons between groups when the vari-
ances were homogeneous. A significance level of P < 0.05 
was accepted as statistically significant.

Results
Specimens and basic physical properties
The mean age of the cadavers at the time of death was 
43.5 (range: 29–52) years. There were no significant dif-
ferences in BMD, supraspinatus thickness, tendon width, 
footprint thickness or footprint width between the 
groups (Table 1).

Displacement of fractures of the humeral greater 
tuberosity
Results relating to 3-, 5- and 10-mm displacement of frac-
tures of the HGT are summarised in Table 2. A steady but 
significant decrease was observed among the fractures 
with 10 mm displacement from Groups A to D. However, 

Fig. 5  Diagrams of the load and load-to-failure tests. A Group A, single-fragment fracture. B Group B, single-fragment fracture with medium size 
full-thickness rotator cuff tear (FT-RCT). C Group C, multi-fragment fracture. D Group D, multi-fragment fracture with medium size FT-RCT​

Table 1  Basic physical properties of the cadaver specimens were as follows

Group A (n) = B = C = D = 6, BMD bone mineral density, SS supraspinatus

Physical properties Group A Group B Group C Group D P

BMD, g/cm2 0.52 ± 0.03 0.52 ± 0.05 0.51 ± 0.06 0.52 ± 0.05 0.26

SS thickness (mm) 5.25 ± 0.42 5.37 ± 0.57 5.01 ± 0.67 5.34 ± 0.37 0.50

SS width (mm) 24.23 ± 2.53 24.15 ± 2.52 23.73 ± 2.37 24.08 ± 2.26 0.92

Footprint length (mm) 12.36 ± 1.88 12.26 ± 1.41 12.42 ± 1.19 11.96 ± 1.51 0.65

Footprint width (mm) 23.01 ± 1.52 22.59 ± 1.78 22.35 ± 1.49 23.43 ± 2.01 0.54
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there were no statistically significant differences between 
the fractures with 10 mm displacement and those with 3- 
or 5-mm displacement within any group.

Load‑to‑failure
Of the four groups, Group A had the highest mean load-
to-failure value (446.83 ± 38.98  N), and the mean value 
was significantly different between each group (Group 
B, Type II fracture, 384.17 ± 36.15 N; Group C, Type III 
fracture, 317.17 ± 23.32  N and Group D, Type IV frac-
ture, 266.83 ± 37.65  N) (Fig.  6). The mode of failure 
was fracture at the humeral surgical neck in six cases of 
Group A. Failure was humeral surgical neck fracture in 
five cases and GT fragment displacement in one case of 
Group B. In Group C, the mode of failure was GT frag-
ment pulled out in two cases, surgical neck fracture in 
three cases and anatomic neck fracture in one. In Group 
D, one case failed due to rotator cuff rupture, two due to 
GT- fragment pulled out and three due to surgical neck 
fracture.

Discussion
Our study demonstrates that there are significant dif-
ferences between the characteristics of HGT frac-
tures with 10-, 5- and 3-mm displacements in terms 

of load-to-failure. This suggests that different surgical 
approaches should be considered depending on the mag-
nitude of displacement in such fractures. We have also 
shown that biomechanical classification of split fractures 
of HGT into Type I (single-fragment), Type II (single-
fragment with medium size FT-RCT), Type III (multi-
fragment) and Type IV (multi-fragment with medium 
size FT-RCT) fractures is reliable and can be used to 
guide the choice of surgical technique, thus confirming 
our primary hypothesis. To the best of our knowledge, 
this is the first study to describe the biomechanical dif-
ferences between split fractures of the HGT using long-
term clinical data.

Split fractures of the HGT involve lesions of the bone 
and rotator cuff matter. The present study revealed that 
Type IV fractures are most susceptible to failure fol-
lowing fixation with a shortened PHILOS plate. This is 
an important finding as it suggests that the number of 
fragments or inclusion of an RCT affects the final result 
of surgery. Furthermore, Type IV fractures were more 
likely to exhibit 10-mm displacement. This highlights the 
necessity for clinicians to be aware of associated symp-
toms and to fix the RCT with a suture anchor at the same 
time as fixing the fracture. This information will enable 
improved preoperative planning and results in terms of 
shoulder function. Interestingly, there were no signifi-
cant differences between groups among fractures with 
3- or 5-mm displacement. This may be due to the use of a 
shortened PHILOS plate, which is a firm fixation. Signifi-
cant differences between groups might become apparent 
if the fractures were fixed through fixation using double-
row sutures or the suture bridge technique. Future stud-
ies investigating the implications of different surgical 
techniques are warranted to evaluate the outcomes of dif-
ferent approaches.

There have been numerous studies focusing on indica-
tions for surgical treatment and fixation technique; how-
ever, only a few have focused on injuries involving both 
fragmentation and RCT [18–21]. An increasing number 
of studies have been published reporting injuries of the 
GT [22–24]; however, to the best of our knowledge, there 
have been none comparing single- and multi-fragment 
fractures. Some studies have examined associated inju-
ries such as Bankart lesions, RCT and superior labral tear 

Table 2  The findings of 3 mm, 5 mm and 10 mm HGT displacements

Each group contained six specimens, a: versus Group B, b: versus Group C, c: versus Group D (P < 0.05)

Displacement (mm) Group A (N) Group B (N) Group C (N) Group D (N)

3 33.50 ± 3.39bc 31.17 ± 6.24 27.17 ± 5.34 27.00 ± 3.74

5 80.17 ± 10.01bc 66.83 ± 17.80bc 45.00 ± 5.83 41.50 ± 8.19

10 194.00 ± 29.23abc 157.00 ± 29.97bc 109.00 ± 17.64c 79.67 ± 15.50

Fig. 6  Results of the load-to-failure test. Notes: a versus Group B; b 
versus Group C; c versus Group D (P < 0.05)
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from anterior and posterior (SLAP) lesions in the context 
of these fractures [25]. Locking plate fixation provides 
superior fixation for split-type GT fractures compared 
with tension bands or double-row suture bridges. There-
fore, we choose to use a shortened PHILOS plate for fixa-
tion in the present study. Previous studies have reported 
load-to-failure values of 842 or 1054  N, considerably 
higher than the results of the present study [24]. This is 
likely due to the fact that we used formalin-fixed cadaver 
shoulder specimens.

Three main techniques of surgical fixation have been 
described for HGT fractures, with different techniques 
being more suitable for different types of fracture. Our 
study provides a system with which to classify fractures 
of the HGT and guide the choice of fixation technique. 
The specific recommendations that we propose are as 
follows: (i) Type I (single-fragment) fractures should be 
fixed using compression screws, which are inexpensive 
and efficient and have been shown to have favourable 
results through biomechanical studies. This is a useful 
approach for areas in which patients cannot afford high 
medical expenses and/or have insufficient health insur-
ance and is also beneficial because the insertion angle 
can be adapted to increase biomechanical strength fol-
lowing fixation of osteoporotic fractures; a subject which 
warrants further study. However, compression screws 
may cause damage to fracture fragments [7, 16, 24]. (ii) 
Type II (single-fragment with medium size RCT) frac-
tures should be fixed using screws combined with suture 
anchors under arthroscopic guidance. This method is 
widely used to treat PHFs as the tendon-bone interface 
fragment is fixed and satisfactory clinical results can be 
achieved [16, 18]. (iii) Type III (multi-fragment) fractures 
should be fixed using a suture bridge or small locking 
plate to provide stable fixation and early return to func-
tion. This surgical technique is simple and efficient [26–
28]. (iv) Type IV (multi-fragment with medium size RCT) 
fractures should be fixed using a small locking plate aug-
mented with suture anchors via a mini-open deltoid-split 
approach [13, 16, 23, 24, 29].

The present study has some limitations which should 
be acknowledged. Firstly, we did not justify the use of this 
method of 3D reconstruction compared to other meth-
ods in patient with GT fracture. Due to a lack of human 
samples, we used 24 formalin-fixed specimens. Future 
studies should be carried out using fresh-frozen human 
cadaveric specimens. Secondly, the clinical models were 
not assessed by computed tomography scan or mag-
netic resonance imaging, which would have provided 
useful information. Thirdly, with the limited number of 
available cadaver specimens, we were unable to evalu-
ate all known fixation techniques. With more specimens, 

further fixation techniques and the application of multi-
planar ultimate loads could be evaluated.

Conclusions
The present study demonstrates that biomechanical clas-
sification of split fractures of the HGT is a reliable classi-
fication system. Although numerous surgical treatments 
for these fractures have been described, there is no gold 
standard in terms of treatment for this type of fracture. 
Therefore, our classification system will be a useful guide 
to enable surgeons to select an appropriate surgical tech-
nique. In the future work, we will validate this study with 
3D Simulation (Finite element analysis).
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