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infiltration of osteoarthritis using 
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Abstract 

Background:  Osteoarthritis (OA) is the most common chronic degenerative joint disorder globally that is charac‑
terized by synovitis, cartilage degeneration, joint space stenosis, and sub-cartilage bone hyperplasia. However, the 
pathophysiologic mechanisms of OA have not been thoroughly investigated.

Methods:  In this study, we conducted various bioinformatics analyses to identify hub biomarkers and immune 
infiltration in OA. The gene expression profiles of synovial tissues from 29 healthy controls and 36 OA samples were 
obtained from the gene expression omnibus database to identify differentially expressed genes (DEGs). The CIBER‑
SORT algorithm was used to explore the association between immune infiltration and arthritis.

Results:  Eighteen hub DEGs were identified as critical biomarkers for OA. Through gene ontology and pathway 
enrichment analyses, it was found that these DEGs were primarily involved in PI3K-Akt signaling pathway and Rap1 
signaling pathway. Furthermore, immune infiltration analysis revealed differences in immune infiltration between 
patients with OA and healthy controls. The hub gene ZNF160 was closely related to immune cells, especially mast cell 
activation in OA.

Conclusion:  Overall, this study presented a novel method to identify hub DEGs and their correlation with immune 
infiltration, which may provide novel insights into the diagnosis and treatment of patients with OA.
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Introduction
Osteoarthritis (OA) is a common arthritis disease world-
wide that can severely impair the function of joints and 
affect the quality of life of the older population [1, 2]. 
OA is a progressive disorder that is characterized by the 
degradation of hyaline articular cartilage, along with sub-
chondral sclerosis, narrowing of the joint space, osteo-
phyte formation, synovial hyperplasia, and structural 
alterations of peripheral muscles and ligaments [3]. The 

main clinical manifestations of OA are knee dysfunction 
and local pain. Approximately, 10% of the world’s popula-
tion aged over 60 years has symptomatic OA [4]. Patients 
with OA always pose considerable psychological, finan-
cial, and physical burdens.

Thus, because of such serious implications, many sci-
entists are focusing their attention on investigating the 
pathogenesis and mechanisms underlying OA. Accord-
ing to its etiology, OA can be divided into two categories: 
primary and secondary forms [5]. In the primary form, 
aging plays a major role in OA occurrence and progres-
sion. Meanwhile, certain diseases, such as chondroma-
lacia patellae, erosive OA, and primary generalized OA, 
are also regarded as subsets of idiopathic OA. In the sec-
ondary form, any predisposing factors that can breach 
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the integrity of the cartilage matrix have the underlying 
potential to induce OA, such as joint trauma, obesity, sig-
nificant family history, reduced levels of sex hormones, 
and muscle weakness [6]. Among these, joint trauma 
and obesity are considered as the strongest risk factors 
[7]. OA development in the knee joint tissues is sig-
nificantly connected with physical activity, lifestyle, and 
weight, whereas in case of hip OA, it is mainly related 
to age, weight, sex, genetic factors, trauma, and occupa-
tion [8]. The development mechanism of OA correlation 
with mechanical, biochemical, and cellular processes 
[6]. As cartilage matrix proteolysis begins, the chondro-
cytes become prone to erosion and fibrillation, and col-
lagen fragments and proteoglycans are released into the 
synovial fluid. This process results in the inflammatory 
response of the synovium tissues, and further promotes 
cartilage thin out, joint space narrowing, and spurs out-
growth. In recent years, studies have provided a deeper 
understanding of the pathophysiology of OA. However, 
there are only a few screening biomarkers and thera-
peutic interventions that are of significance for the clini-
cal treatment of OA. Therefore, the elucidation of more 
unique OA biomarkers is urgently needed for accurately 
identifying patients and developing therapies.

With the development of microarray technologies, 
bioinformatics analyses have been widely employed to 
identify disease-specific biomarkers, explore significant 
epigenetic and genetic alterations, and reveal the molec-
ular mechanism of arthritis. Integrated bioinformatical 
analyses of multiple expression cohorts have revealed 
several hub genes, including AKT1, IL2, TP53, CD247, 
and CCL5, that commonly participate in the develop-
ment of both OA and rheumatoid arthritis [9, 10]; these 
genes may act as therapeutic targets for arthritis therapy. 
In addition, the interaction relationship between these 
genes has also been clearly revealed by previous stud-
ies. Several biological pathways (such as osteoclast dif-
ferentiation, inflammation, and immune response) are 
also commonly associated with arthritis progression [10]. 
Furthermore, the TNF signaling pathway, instead of the 
chemokine signaling pathway, is considered as the main 
pathway involved in OA inflammatory development 
[11]. These findings, thus, provide novel insight into the 
exploration of arthritis. However, only few bioinformat-
ics studies have solely focused on OA and its correlation 
with immune cells. The weighted gene co-expression net-
work (WGCN), which focuses on gene sets rather than 
individual gene expression, is a frequently used method 
to understand the gene association patterns between dif-
ferent phenotypic traits [12, 13]. During WGCN analysis 
(WGCNA), OA expression data can be used to construct 
a powerful scale-free network to identify hub biomark-
ers for mechanism evaluation and clinical diagnosis. 

Furthermore, differential gene expression analysis of 
transcriptional data is another powerful tool that pro-
vides quantitative expression level changes between two 
subgroups [14]. The combination of these two bioinfor-
matic analyses has been previously used for tumor gene 
identification, such as in case of osteosarcoma [15], gas-
tric cancer [16], and head and neck squamous cell carci-
noma [17], but rarely for arthritis diseases.

In the present study, we identified differentially 
expressed genes (DEGs) between healthy controls 
and patients with OA using two approaches, namely, 
WGCNA and differential gene expression analysis, to 
enhance the discriminatory ability of highly connected 
genes. Subsequently, the co-expressed differentially 
expressed hub genes from the two groups were used to 
identify the same pathological manifestations or mecha-
nisms in OA. Furthermore, CIBERSORT algorithm 
method was used to analyze the content of 22 immune 
cells in synovium tissues and explore the connections 
between the expression of hub biomarkers and immune 
infiltration in OA. Thus, the aims of this study were to 
identify co-expressed hub genes, characterize immune 
infiltration differences in the synovium of OA, and pro-
vide novel insights into the diagnosis and therapeutic tar-
gets of OA.

Materials and methods
Raw data acquisition and preprocessing
Gene expression profiles of 136 synovial tissues from 
joints were acquired from the gene expression omnibus 
(GEO) database from the following cohorts: GSE12021, 
GSE55235, GSE55457, and GSE55584 (https://​www.​ncbi.​
nlm.​nih.​gov/​geo/). After separating rheumatoid arthritis 
tissues and samples whose detection platform was differ-
ent from that of others, as in GSE12021 (GPL96, Affym-
etrix Human Genome U133B), the remaining diseased 
specimens (including 29 samples from healthy controls 
and 36 samples from patients with OA) were all tested 
using the same Affymetrix Human Genome U133A plat-
form and merged as one profile to explore the hub genes. 
All pathological synovial tissues were collected from 
patients with OA after joint replacement surgery, and 
normal synovium was collected early postmortem from 
macroscopically normal knee joints. Approval by an eth-
ics committee was not necessary because all data were 
collected from publicly available databases. The merged 
gene expression profiles were log2-transformed and then 
normalized using the “sva” R package to remove batch 
effects, as described in previous studies [11, 18].

Construction of the WGCN and hub module identification
The “WGCNA” package in R was utilized to construct 
a gene co-expression network [19, 20]. WGCNA is an 
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advanced systems biology-based approach to identifying 
functionally enriched gene groups and providing more 
consistent gene rankings. Further, its focus on module 
eigengenes effectively circumvents the multiple testing 
problems of standard differential expression methods. 
Pairwise Pearson’s correlation coefficients were calcu-
lated for the genes, and a weighted adjacency matrix was 
created using the following formula: amn =|cmn|β 
(cmn = Pearson’s correlation between gene m and gene 
n; amn = adjacency between genes m and n). Following 
this, a suitable soft-threshold parameter “β” was selected 
to emphasize strong gene correlations and penalize weak 
correlations. The adjacencies were then transformed to 
a topological overlap matrix (TOM). Using TOM-based 
dissimilarity measures, the average linkage hierarchical 
clustering was used to construct the gene dendrogram 
with a minimum module size of 50; the dissimilarity of 
the module eigengenes was also calculated. Further-
more, two parameters, module eigengenes and gene sig-
nificance, were identified to reveal the modules that were 
relevant to clinical traits of OA; consequently, the genes 
within the functional module were considered to be can-
didate genes.

Differential expression analysis and interaction 
with the modules of interest
Differential expression analysis was performed using the 
“limma” R package to identify candidate DEGs, using the 
significance analysis of microarrays with a false discov-
ery rate (FDR) < 0.05 and |log2 fold change (FC)|> 1 [21]; 
the results were visualized as a volcano plot using the 
“ggplot2” R package [22]. Furthermore, the overlapping 
genes between candidate DEGs and OA-WGCNA were 
extracted and considered as the “real” DEGs; these were 
visualized in a Venn diagram using the “VennDiagram” R 
package [23].

Gene ontology (GO) and Kyoto Encyclopedia of genes 
and genomes (KEGG) enrichment analyses
KEGG pathway and GO enrichment analyses were 
applied to investigate the biological functions of identi-
fied DEGs using DAVID version 6.8 [24]. Three terms 
comprised the GO analysis, including cellular component 
(CC), biological process (BP), and molecular function 
(MF). Both the FDR and p values < 0.05 were considered 
as significant terms.

Immune infiltration analysis by CIBERSORT
The CIBERSORT algorithm (https://​ciber​sort.​stanf​ord.​
edu/) is a widely applied method for calculating the pro-
portions of 22 types of leukocytes in complex tissues pro-
filed by microarray [25]. In this study, all samples were 
screened with a p value < 0.05, and CIBERSORT analysis 

was performed to characterize immune cell infiltration in 
OA synovial tissues. The composition of immune cells in 
each sample was visualized using a bar plot and heatmap, 
and the infiltration levels of each cell between patients 
with OA and healthy controls were analyzed using the 
“vioplot” R package.

Results
DEG identification
After processing the raw microarray results from 
GSE12021, GSE55457, GSE55235, and GSE55584, candi-
date DEGs were screened using the criteria of FDR < 0.05 
and |log2 FC|> 1. As a result, a total of 271 DEGs, com-
prising 194 downregulated and 77 upregulated genes, 
were differentially expressed between the OA samples 
and controls (Fig. 1A, B).

Functional enrichment analysis of the candidate DEGs
GO analysis showed that in terms of BP, the candi-
date DEGs were significantly enriched in response to 
multi-multicellular organism processes, regulation 
of chemokine production, female pregnancy, cellular 
response to external stimulus, and chemokine produc-
tion (Table 1). With respect to MF, the candidate DEGs 
were mainly enriched in receptor ligand activity, DNA-
binding transcription activator activity, cytokine activity, 
major histocompatibility class II receptor activity, and 
growth factor activity. With respect to pathway enrich-
ment, KEGG pathway analysis showed that the candi-
date DEGs were mainly enriched in the TNF signaling 
pathway, rheumatoid arthritis, osteoclast differentiation, 
interleukin-17 signaling pathway, and mitogen-activated 
protein kinase signaling pathway (Table 2).

Identification of hub modules by constructing a WGCN
To identify the functional clusters in OA, WGCNA 
was performed for 36 OA tissues. As shown in Fig. 2A, 
synovial tissues from healthy joints and OA joints were 
included in the analysis. To construct a scale-free net-
work, β = 4 (scale-free R2 = 0.86) was selected as the soft 
threshold (Fig. 2B), and a total of 13 co‑expressed mod-
ules were identified (Fig. 2C). Subsequently, each module 
was assigned a different color to identify the connections 
between the module and two clinical traits (normal and 
OA). Among all the modules, the brown module was 
found to have the closest association with OA devel-
opment (Fig.  2D). Among this module, 49 genes with 
remarkable connectivity (MM > 0.8 and GS > 0.5) were 
identified as significant hub genes of interest (Fig.  3A). 
The number distribution of the co-expressed genes from 
the DEGs and hub genes from the brown module of 
OA is shown in Fig. 3B. A total of 18 overlapping genes 
were extracted for further prognosis analysis. The gene 
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Fig. 1  Identification of differently expressed OS genes. Volcano plot (A) and heatmap (B) of DEGs between OA synovial and normal controls

Table 1  GO enrichment analysis of DEGs (top 10 terms of each category were listed)

Ontology ID Description Adj. p value Count

BP GO:0044706 Multi-multicellular organism process 0.00087884 14

BP GO:0032642 Regulation of chemokine production 0.00087884 9

BP GO:0007565 Female pregnancy 0.00087884 13

BP GO:0071496 Cellular response to external stimulus 0.00093422 17

BP GO:0032602 Chemokine production 0.00101597 9

BP GO:0050727 Regulation of inflammatory response 0.00139524 20

BP GO:0009314 Response to radiation 0.00139524 19

BP GO:0031667 Response to nutrient levels 0.00139524 20

BP GO:0050900 Leukocyte migration 0.00139524 20

BP GO:0045444 Fat cell differentiation 0.00139524 13

MF GO:0048018 Receptor ligand activity 0.00159324 20

MF GO:0001228 DNA-binding transcription activator activity, RNA 
polymerase II-specific

0.01065086 17

MF GO:0005125 Cytokine activity 0.01837692 11

MF GO:0032395 MHC class II receptor activity 0.02077473 3

MF GO:0008083 Growth factor activity 0.02077473 9

MF GO:0005126 Cytokine receptor binding 0.02077473 12

MF GO:0008201 Heparin binding 0.02077473 9

MF GO:0071889 14–3-3 protein binding 0.02776368 4

MF GO:0017017 MAP kinase tyrosine/serine/threonine phosphatase 
activity

0.02788606 3

MF GO:0005539 Gycosaminoglycan binding 0.03279933 10
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expression level comparison of the hub genes indicated 
that all 18 genes were significantly downregulated in the 
OA samples (Fig. 4).

GO and KEGG enrichment analyses of hub biomarkers
As shown in Fig.  5A–C, the 18 identified hub biomark-
ers were primarily involved in some critical BPs, such 
as protein auto-ADP-ribosylation, mast cell chemotaxis 
and migration, and induction of positive chemotaxis. The 
hub genes were also found to be enriched in tight junc-
tion, apical junction complex, and adherens junction in 
the CC category and BH domain binding, death domain 
binding, and vascular endothelial growth factor receptor 

Table 2  Top 10 pathways of DEGs enrichedin KEGG analysis

ID Description Adj. p value Count

hsa04668 TNF signaling pathway 1.48E−06 13

hsa05323 Rheumatoid arthritis 0.00081662 9

hsa04380 Osteoclast differentiation 0.00113721 10

hsa04657 IL-17 signaling pathway 0.00342316 8

hsa04010 MAPK signaling pathway 0.00351106 14

hsa04933 AGE-RAGE signaling pathway in 
diabetic complications

0.00351106 8

hsa05140 Leishmaniasis 0.00351106 7

hsa04064 NF-kappa B signaling pathway 0.00351106 8

hsa05169 Epstein-Barr virus infection 0.00396226 11

hsa05164 Influenza A 0.00401821 10

Fig. 2  Identification of modules associated with the clinical information in the OA tissues. A Clustering dendrogram of OA samples and normal 
controls. B The scale-free fit index for soft-thresholding powers. C A heatmap showing the correlation between the gene module and clinical trait 
(OA and normal). Each module was assigned with different colors. The correlation coefficient in each cell represented the correlation between 
gene module and the clinical traits, which decreased in size from red to blue. D Distribution of average gene significance and errors in the modules 
associated with OA progression



Page 6 of 11Wu et al. J Orthop Surg Res          (2021) 16:630 

binding in the MF category. Moreover, the results of 
KEGG enrichment analysis indicated that the selected 
hub genes played a critical role in numerous pathways, 
such as PI3K-Akt signaling pathway and Rap1 signaling 
pathway (Fig. 5D–F).

Correlation of ZNF160 with immune infiltration in OA
The zinc finger protein 160 (ZNF160) gene showed 
the highest fold change among the hub genes (|log2 
FC|= − 1.9) and was thus selected for further 

exploration. To further confirm the interactions between 
ZNF160 expression and immune infiltration, the CIB-
ERSORT algorithm was used to analyze the proportion 
of 22 immune cell types in OA. As shown in Fig. 6, the 
OA samples tended to have a lower proportion of naïve 
B cells, CD4 memory resting T cells, follicular helper T 
cells, and eosinophils, and a higher proportion of regula-
tory T cell (Tregs), M0 macrophages, resting mast cells, 
and activated mast cells. Meanwhile, the difference and 
correlation analysis of OA samples also revealed that 
the infiltrating levels of eight types of immune cells were 

Fig. 3  Identification of real DEGs among the OA synovial tissues. A Scatter plot of module eigengenes in brown modules. B The Venn diagram of 
genes among candidate DEGs and WGCNA of interest genes from brown module

Fig. 4  Box plot shows mRNA expression pattern of identified hub DEGs in normal tissues and OA synovial samples
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significantly associated with ZNF160 expression lev-
els (p < 0.05; Fig.  7). Among them, activated mast cells, 
resting NK cells, macrophages, and neutrophils were 
positively correlated with ZNF160 expression, whereas 
activated NK cells, CD8 T cells, resting dendritic cells, 
and resting mast cells were negatively associated with 
ZNF160 expression. These results indicated that ZNF160 
might participate in the progression of OA through mod-
ulation of immune cell infiltration levels.

Discussion
OA, the most common osteoarthropathy disease, results 
in irreversible bone erosion and cartilage destruction. 
Without timely and effective treatment, OA can severely 
affect the function of a patient’s joints [26]. In recent 
years, increasing studies have focused on the modulation 
effects of synovitis in OA. Synovial inflammation leads to 
the formation of inflammatory pannus, resulting in carti-
lage erosion and a negative impact on the therapies [27, 
28]. Evaluating the potential mechanism of synovitis in 
OA may help improve individual treatment and disorder 
diagnosis. The development of high-throughput technol-
ogies has enabled scientists to discover novel therapeutic 
targets and acquire a deeper understanding of molecular 
mechanisms of several diseases [29], including OA; how-
ever, the distinctive pathogenesis and detailed mecha-
nism of OA progression in the synovium remains elusive.

To fill the current knowledge gap, gene profiles of 65 
synovial tissues were collected, co-expression networks 
were constructed, and differential expression analysis 
was performed to identify DEGs. As a result, 18 genes, 
including ZNF160, leucine rich repeat containing 3 
(LRRC3), proline rich 11 (PRR11), maternally expressed 
3 (MEG3), cyclin L1 (CCNL1), pre-mRNA process-
ing factor 31-403P17.4 (RP11-403P17.4), HAUS aug-
min like complex subunit 2 (HAUS2), FERM domain 
containing 4A (FRMD4A), zinc finger protein 721 
(ZNF721), KIAA0485, tankyrase 2 (TNKS2), serine/
arginine repetitive matrix 2 (SRRM2), target of Myb1-
like 2 membrane trafficking protein (TOM1L2), RNA 
polymerase I subunit B (POLR1B), natural killer cell 
triggering receptor (NKTR), MCL1  apoptosis regula-
tor (MCL1), membrane-associated guanylate kinase, 
WW and PDZ domain containing 1 (MAGI1), and pla-
cental growth factor (PGF) were identified as differen-
tially expressed hub biomarkers. As a vital number of 
imprinted DLK-MEG3 locus, MEG3 is proved to be 
involved not only in the modulation of immune cells 
[30] but also in the suppression of various bone dis-
eases, especially OA [31]. MEG2 is significantly down-
regulated in the OA tissues than in the normal cartilage 
[32]. Meanwhile, studies found that MEG2 exerted its 
inflammation inhibitory effect by inhibiting angiogen-
esis [32], interacting with miRNAs [33, 34], promoting 
the role of methylene blue [35], etc. Thus, MEG3 has 

Fig. 5  Functional enrichment analysis of identified hub DEGs. (A–C) GO enrichment terms of hub genes in biological process (BP), cellular 
component (CC), and molecular function (MF). (D–F) KEGG enrichment terms of hub genes. In each bubble plot, the size of the dot represents the 
number of enriched genes



Page 8 of 11Wu et al. J Orthop Surg Res          (2021) 16:630 

been recently regarded as an inhibitor of OA progres-
sion. MCL1 is another biomarker that plays a vital role 
in the arthritis joints. As a member of the pro-survival 
Bcl-2 subfamily, MCL1 is over-expressed and contrib-
utes to suppressing chronic inflammation in rheu-
matoid arthritis by enhancing the resistance ability of 
synovial fibroblasts to apoptosis [36, 37]. Although the 
specific role of MCL1 in osteoarthritis is merely known, 
a study has discovered that MCL1 could serve as a tar-
get of miR203 to inhibit cartilage degeneration [38]. 
This result indicated that our identified genes may act 
as hub biomarkers in the pathological progression of 
OA and thus warrant further exploration.

The identified DEGs were also assessed using func-
tional enrichment analysis that revealed that most genes 
were closely related to PI3k-Akt and Rap1 signaling 
pathways [39–41], both of which are involved in the pro-
gression of arthritis. At the same time, GO analysis also 
indicated that these genes participated in several immune 
progressions, such as mast cell chemotaxis and migra-
tion. Considering the role of immune cell infiltration in 

OA, we further used the CIBERSORT algorithm method 
used to analyze OA. Similar to the previous analysis [18], 
several immune cells were noted to be significantly differ-
ent between the OA synovium and control. Among these 
cells, activated mast cells, resting NK cells, macrophages, 
neutrophils, activated NK cells, CD8 T cells, resting 
dendritic cells, and resting mast cells were significantly 
correlated with ZNF160 expression levels, which sug-
gested that ZNF160 might modulate OA synovial hyper-
plasia and progression by acting on these three types of 
immune cells. However, the exact relationship between 
ZNF160 and these immune cells and the exact effect of 
ZNF160 on synovial immune infiltration must be con-
firmed with further studies.

Nonetheless, despite these findings, there were still 
certain limitations in this study. Firstly, this study was 
performed as a retrospective analysis, thus, more pro-
spective approaches are required to confirm the results. 
Secondly, there was a lack of experimental explorations 
performed to confirm the results we uncovered through 
bioinformatics. Mechanistic insight into the identified 

Fig. 6  Immune infiltration analysis performed in OA tissues. Barplot (A) and heatmap (B) showed the composition of 22 subpopulations of immune 
cells in 36 OA synovial and 29 normal controls. C Heatmap showed the correlation between 22 kinds of immune cells in OA and numeric in each 
tiny box indicating the p value of correlation between two types of cells. D The violin plot showed the difference of immune infiltration between 
OA (red color) and normal controls (blue color)
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genes and their connections with related pathways should 
also be investigated. Finally, the physiological role of the 
identified hub genes in modulating immune cells is yet to 
be determined. In the future, experiments should be per-
formed to achieve mechanistic insight into the identified 
genes and their connection with the development of OA.

Conclusion
To summarize, a total of 18 hub genes that possibly 
play a critical role in OA pathogenesis were identified. 
The functional enrichment analysis of the identified 

biomarkers provided a potential mechanism for clarify-
ing OA development. Moreover, our results showed that 
ZNF160 might be an indicator for the modulation of 
immune cells in OA synovial tissues. Therefore, further 
investigation should be conducted to verify the accuracy 
of a combined analysis of ZNF160 expression level and 
immune infiltration profiles in patients with arthritis.
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cells proportion with the ZNF160 expression (p < 0.05). The blue line in each plot was fitted linear model indicating the proportion tropism of the 
immune cell along with ZNF160 expression. C Venn plot of immune cells codetermined by the difference and correlation analysis
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