SYSTEMATIC REVIEW

Open Access

The global prevalence of osteoporosis in the world: a comprehensive systematic review and meta-analysis

Nader Salari¹, Hooman Ghasemi², Loghman Mohammadi³, Mohammad hasan Behzadi³, Elham Rabieenia², Shamarina Shohaimi⁴ and Masoud Mohammadi^{5*}

Abstract

Background: Osteoporosis affects all sections of society, including families with people affected by osteoporosis, government agencies and medical institutes in various fields. For example, it involves the patient and his/her family members, and government agencies in terms of the cost of treatment and medical care. Providing a comprehensive picture of the prevalence of osteoporosis globally is important for health policymakers to make appropriate decisions. Therefore, this study was conducted to investigate the prevalence of osteoporosis worldwide.

Methods: A systematic review and meta-analysis were conducted in accordance with the PRISMA criteria. The Pub-Med, Science Direct, Web of Science, Scopus, Magiran, and Google Scholar databases were searched with no lower time limit up till 26 August 2020. The heterogeneity of the studies was measured using the l^2 test, and the publication bias was assessed by the Begg and Mazumdar's test at the significance level of 0.1.

Results: After following the systematic review processes, 86 studies were selected for meta-analysis. The sample size of the study was 103,334,579 people in the age range of 15–105 years. Using meta-analysis, the prevalence of osteoporosis in the world was reported to be 18.3 (95% CI 16.2–20.7). Based on 70 studies and sample size of 800,457 women, and heterogenicity l^2 : 99.8, the prevalence of osteoporosis in women of the world was reported to be 23.1 (95% Cl 19.8–26.9), while the prevalence of osteoporosis among men of the world was found to be 11.7 (95% Cl 9.6– 14.1 which was based on 40 studies and sample size of 453,964 men.). The highest prevalence of osteoporosis was reported in Africa with 39.5% (95% Cl 22.3–59.7) and a sample size of 2989 people with the age range 18–95 years.

Conclusion: According to the medical, economic, and social burden of osteoporosis, providing a robust and comprehensive estimate of the prevalence of osteoporosis in the world can facilitate decisions in health system planning and policymaking, including an overview of the current and outlook for the future; provide the necessary facilities for the treatment of people with osteoporosis; reduce the severe risks that lead to death by preventing fractures; and, finally, monitor the overall state of osteoporosis in the world. This study is the first to report a structured review and meta-analysis of the prevalence of osteoporosis worldwide.

Keywords: Prevalence, Osteoporosis, Meta-analysis, Systematic review

Background

*Correspondence: Masoud.mohammadi1989@yahoo.com ⁵ Department of Nursing, School of Nursing and Midwifery, Kermanshah

University of Medical Sciences, Kermanshah, Iran Full list of author information is available at the end of the article

Osteoporosis is a common disease all over the world. Osteoporosis has been operationally defined based on bone mineral density (BMD) assessment. According to the WHO criteria, osteoporosis is defined as a

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativeco mmons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. BMD that lies 2.5 standard deviations or more below the average value for young, healthy women (a *T*-score of < -2.5 SD) (1, 6). The most widely validated technique to measure BMD is dual-energy X-ray absorptiometry (DXA), and diagnostic criteria based on the *T*-score for BMD area recommended entry criterion for developing pharmaceutical interventions in osteoporosis (7–9) [1].

Osteoporosis is classified as primary (includes type I and type II) and secondary. Primary osteoporosis is seen in post-menopausal women and men and women over 70 years of age due to ageing [2]. Secondary osteoporosis is caused by diseases, treatments or idiopathic. Systemic diseases, endocrine diseases, and malignant neoplasms are among the diseases that cause secondary osteoporosis. Besides, chronic use of glucocorticoids, lifestyle conditions, habits, and major depression are other causes of osteoporosis [2].

Various methods are used to measure osteoporosis. Typically, to diagnose osteoporosis, bone mineral density (BMD) is measured by dual-energy X-ray absorptiometry (DXA) at various skeletal sites [3]. Another way to diagnose osteoporosis is the speed of sound (SOS) in the tibia, which can be measured by ultrasound imaging [4].

Risk factors for osteoporosis are divided into two categories: modifiable and non-modifiable [5]. Weight, smoking, alcohol consumption [6], physical inactivity, dietary calcium deficiency, and long-term glucocorticoid use are among the risk factors for the modifiable osteoporosis group. Gender, age, race, and genetic characteristics are among the risk factors for the non-modifiable osteoporosis group [5]. These factors can also be more widespread with respect to gender. For example, in women, premature menopause and loss of ovarian function before menopause are other risk factors for osteoporosis [6].

A study in Turkey showed that women between the ages of 18–49 who smoke, have fair skin, or have a family history of osteoporosis are at higher risk for osteoporosis [7]. The clinical symptoms of osteoporosis in old age include decreased body height, dowager's hump or kyphosis, bone fracture and respiratory impairment [8].

In a double-blind placebo-controlled study in osteoporosis comprised of 483 women with post-menopausal osteoporosis, 110 women with secondary osteoporosis, and 84 men with osteoporosis of any cause, aged between 28 and 88 years old, the mortality rate in people with one or more fractures was 4.4 times higher [9]. The incidence of osteoporotic fractures has made it one of the leading causes of death in the elderly [3]. Because the risk of osteoporotic fractures is higher in older women than in older men, all menopausal women should be screened for signs of osteoporosis [10]. Fractures usually occur in three areas: vertebrae, distal arm, and hip [11]. Vertebral fractures are more common in women than men [11]. Research has shown that if women have to be divided into three groups; premenopausal (before menopause), the onset of menopause, and women with over five years of menopause, bone fractures due to osteoporosis were more common in post-menopausal women than in premenopausal women or around the onset of menopause [12]. Twenty per cent of women die within a year of a fracture [11].

Men have more bone mass during growth and develop more muscle mass, which provides more skeletal integration. Men do not experience menopause. Also, they have a shorter life expectancy than women; therefore, less time is available to develop the disease. The prevalence of osteoporosis in older men than in young men is also based on this fact [11].

Osteoporosis is a problem for both sexes. However, the majority of research on osteoporosis has focused on women because women are more likely than men to develop osteoporosis and subsequent fractures [11]. So far, many studies have been conducted on the prevalence of osteoporosis in different parts of the world. These studies have either been based on small samples from the target population [13], or to a lesser extent, based on all data collected in the medical databases of a country such as the USA [14] and Korea [15]. According to a study based on the SOS criteria in 2003, the prevalence of osteoporosis in Chinese women was reported to be 10.08% [4]. In another study in 2005, the prevalence of osteoporosis in Vietnamese women, based on the BMD criteria, was reported to be 15.4% [16].

Orthopaedic surgeons are typically only involved in the osteoporotic patient's care as a consequence of a fracture and with the single biggest risk factor for a future fracture being a previous fragility fracture, it, therefore, follows that the area of focus for the orthopaedist should be on the secondary prevention of future fractures [9, 10]. With the instigation of the Own the Bone program by the AOA, the idea of the orthopaedist being a key component in the care of a patient's bone health, beyond the acute fracture care, has gained a great deal of traction [10, 11].

Interestingly enough, one of the fractures that is the most common in the osteoporotic individual is also the most often missed: vertebral body fractures. They are most often missed due to a lack of inclusion in the differential diagnosis of patients with back pain and are thus overlooked [11–14]. A vertebral body fracture should be suspected in any patient at risk for osteoporosis with back pain or kyphosis [11–14].

Studies in many different countries have demonstrated that with increased communication between the orthopaedist, patient and patient's PCP, there is increased usage of pharmacotherapeutics, calcium and vitamin D supplementation, and BMD assessment with DXA scan [14-17]. There is also good evidence that the use of calcium, vitamin D and pharmaceutical interventions results in a decreased risk of fragility fractures [14-17].

A study of 773 Indian men and women between the ages of 30 and 90 showed that the prevalence of osteoporosis was 24.7%. The prevalence in women was reported to be 15%; 10.3% was related to post-menopausal women, and 4.7% to premenopausal women. In this study, the prevalence in men was reported to be 9.7% [17].

The prevalence of osteoporosis in a sample of 524 Indian people between the ages of 20 and 85 was reported to be 6.9%, 11.1% of which were women, and 3.9% were men [18].

According to the data taken in a random sample from the Taiwan National Health Insurance (NHI) database in 2006, the prevalence of osteoporosis in Taiwanese men over the age of 50, based on BMD criteria, was reported to be 1.63% [19]. While in a survey in 2018, this rate was reported at 9.7% [19–21].

In another study, the prevalence of osteoporosis in Saudi Arabia men between the ages of 30 and 90 years was reported to be 24.1%; 19.2% of which was related to the age range of 30–50 years and 23.5% was related to the age range of 50–90 years [21].

These discrepancies in reports of the prevalence of osteoporosis can be seen in research in other parts of the world.

It is important to have consistent information on the prevalence of osteoporosis worldwide. With increasing life expectancy and longevity, the prevalence of osteoporosis and related fractures is increasing [15]. This is a serious challenge not only for health officials but also for individuals and their families and society in general [15]. Determining the prevalence and incidence of osteoporotic fractures is the first step in adopting the necessary strategies to reduce the burden of this challenge and concerns [15]. Due to the dispersion of reports related to the prevalence of osteoporosis in the world, which was based on small and large samples, and also lack of estimates of the prevalence worldwide, we decided to have a systematic review of all studies conducted in this field and examined the worldwide prevalence of osteoporosis, using meta-analysis tools.

Therefore, this study aims to investigate the systematic analysis of evidence and studies to report the prevalence of osteoporosis worldwide.

Methods

Search strategy and study selection procedure

Searches in this meta-analysis study were performed by two researchers. As part of the research methodology, PubMed, Science Direct, Web of Science, Scopus and Persian language databases such as SID and Magiran were searched with limited English and Persian language and no time limit until August 2020. The keywords used to search for resources were selected from the Medical Subject Headings (MeSH) database in this study. A search using keywords osteoporosis, osteoporosis, prevalence, cross-sectional, age-related, post-traumatic, and all the possible combinations of these words were designed according to the pattern of each database. All information related articles were identified and added to the EndNote bibliography management software. In addition to maximize the comprehensiveness of the search, the lists of references in the identified articles were manually reviewed. After collecting articles, the duplicate papers that were identified within various databases were excluded.

Search strategy in all databases: (((((((osteoporosis [Title/Abstract]) OR Age-Related Osteoporosis [Title/ Abstract]) OR Bone Loss [Title/Abstract]) OR Post-Traumatic [Title/Abstract]) OR Senile Osteoporosis [Title/ Abstract]) AND prevalence OR Period Prevalence OR Point Prevalence))))))

Inclusion criteria were as follows: Studies that have examined the prevalence of osteoporosis, observational (cross-sectional) studies, and studies whose full text was available.

Exclusion criteria were as follows: Duplicate studies, unrelated studies to the subject and purpose of this study, unclear methodology, interventional studies, case report studies, studies whose full text was not available, and studies whose language was not Persian or English.

Study selection procedure

Initially, all articles related to osteoporosis were collected, and a list of abstracts was prepared after the search was completed. At this point, all articles titled 'Prevalence' and 'Osteoporosis' entered the initial list. Then, a checklist appropriate to the type of study was used, which includes author's name, title, year and month of publication, place of study, sample size, the overall prevalence, and risk factors for all studies that were initially evaluated were prepared for final evaluation. Accordingly, the full text of the remaining articles from the previous stage, i.e. screening, were carefully examined, and irrelevant studies were excluded by considering the inclusion and exclusion criteria. In order to prevent bias, all stages of resource review and data extraction were performed by two reviewers independently. If an article was not included, the reason for the exclusion was mentioned. Then, those articles that included patients with osteoporosis were finally approved. In the end, 86 relevant articles entered the meta-analysis stage. The full text of the articles was reviewed for final analysis.

Quality evaluation

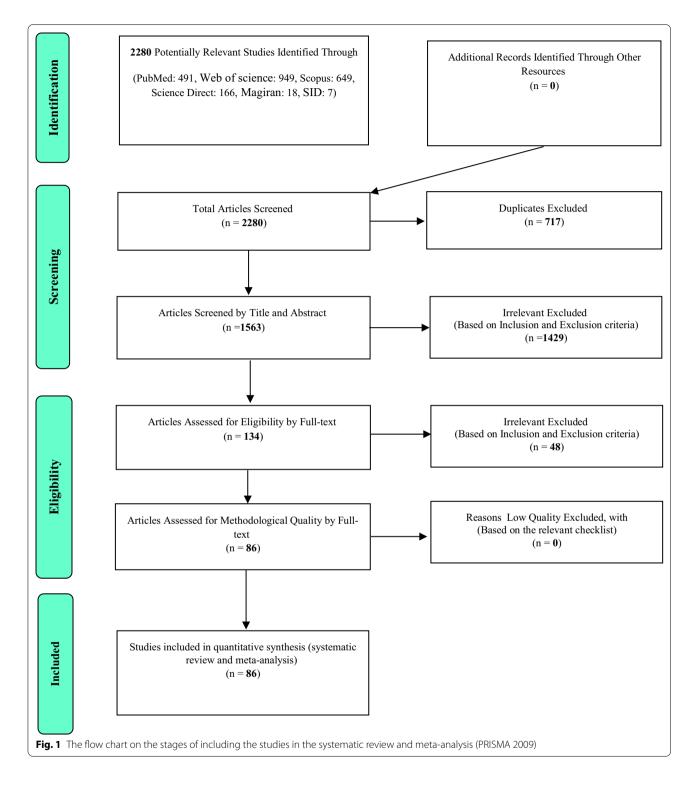
To evaluate the quality of articles (i.e. methodological validity and results), a checklist appropriate to the type of study was used. STROBE checklists are commonly used to critique and evaluate the quality of observational studies, such as the present study. The STROBE checklist consists of six scales/general sections: title, abstract, introduction, methods, results, and discussion. Some of these scales have subscales, resulting in a total of 32 subscales/items. Accordingly, the maximum score that could be obtained using the STROBE 32 checklist is 32 [20]. Considering the score of 16 as the cut-off point, articles with scores of 16 or above were considered medium- or high-quality articles. Furthermore, articles with scores below 16 were considered weak- or low-quality articles and excluded from the study. In the present study, based on the evaluation conducted using the STROBE checklist, 86 articles were entered for the systematic review and meta-analysis process.

Statistical analysis

Since the prevalence rate has a binomial distribution, the variance of the prevalence was calculated using the binomial distribution formula, and the average weight was used to combine the prevalence rate in different studies. As well as to evaluate the heterogeneity of the selected studies, the I^2 index was used. Therefore, the random effects model was used to combine the results of the studies. Meta-regression was used in order to investigate the relationship between the prevalence of osteoporosis and the year of study and sample size. To investigate the publication bias, due to the high volume of samples entered into the study, the Begg and Mazumdar's test and corresponding Funnel plots were adopted with a significance level of 0.1. Data analysis was performed using the Comprehensive Meta-Analysis (Version 2) software.

Results

As shown in Fig. 1 and based on the initial search in the database, 2280 articles were found, of which 491 articles were extracted from the PubMed database, 166 articles from the Science Direct database, 949 articles from Web of Science, 649 articles from Scopus, seven articles from SID, and 18 articles from Magiran. Out of the total number of articles, 717 articles were duplicates that were excluded in the first stage. In the screening stage, 1429 articles were excluded by considering the inclusion and exclusion criteria and the application of time limit from 2000 to 2020. Eight articles that seemed to be related to the study were excluded from the study due to the lack of access to their full text. In the eligibility evaluation stage, the full texts of the remaining 134 articles were examined based on the inclusion and exclusion criteria, and 48 irrelevant articles were omitted. The studies were reviewed based on the four-step process of PRISMA2009 (Fig. 1), including identifying articles, screening, reviewing the criteria for accepting articles, and the articles that entered the meta-analysis process. Finally, 86 articles were included in the final analysis; their information is given in Table 1.


Due to the heterogeneity of the selected studies, the I^2 test ($I^2 = 97.9$) and the random effects model were used to combine the reported results of studies and approximate the total prevalence. However, according to the results of Begg and Mazumdar's test and funnel diagram at a significance level of 0.1, no bias was observed in the results of the prevalence of osteoporosis worldwide in this study (P = 0.103) (Fig. 2).

Meta-analysis

A total of 86 studies were used to assess the prevalence of osteoporosis in the world, including 64 studies examining the prevalence of osteoporosis in Asian countries, nine studies in the European population, nine studies in the USA, three studies in Africa, and one study in Australia. The sample size was 103,334,579 people in the age range 15–105 years, and the prevalence of osteoporosis in the world was reported to be 18.3 (95% CI 16.2–20.7). The midpoint of each line segment indicates the prevalence in each study, and the diamond shape indicates the prevalence in the population for the entire study (Fig. 3).

In addition to reporting the prevalence of osteoporosis worldwide, the prevalence of this disease across five continents was also reported in this study. Table 2 shows the prevalence of osteoporosis in the world and by continent. Accordingly, the highest prevalence of osteoporosis was reported in Africa with 39.5% (95% CI 22.3-59.7). Based on the results of Begg and Mazumdar's test at a significance level of 0.1, no bias was observed in the results prevalence of osteoporosis in the world and by continents (P > 0.05). However, the number of reported epidemiological studies on osteoporosis in Africa is limited. Based on the results of this study, it was revealed that the prevalence of osteoporosis in Africa is much worse than in other continents. The prevalence of osteoporosis in the Americas is far better than that in Europe and Asia. The prevalence of osteoporosis in Asia is higher than that in the USA and Australia. Likewise, the prevalence of osteoporosis in Asia is lower than in Africa and Europe.

The results of prevalence of osteoporosis in terms of diagnostic tools are reported in Table 2, according to which the highest prevalence of osteoporosis with BMD instrument was 19.6 (95% CI 14.3–26.2).

Prevalence of osteoporosis in women

In Fig. 4, based on 70 studies and sample size of 800,457 women and heterogenicity (I^2 : 99.8), the prevalence of osteoporosis in women of the world was reported to be 23.1 (95% CI: 19.8–26.9). According to the results of Begg

and Mazumdar's test at a significance level of 0.1, no bias was observed in the prevalence of osteoporosis in women of worldwide in this study (P=0.227). The analysis of the results of the prevalence of osteoporosis by sex on each continent is reported in Table 3.

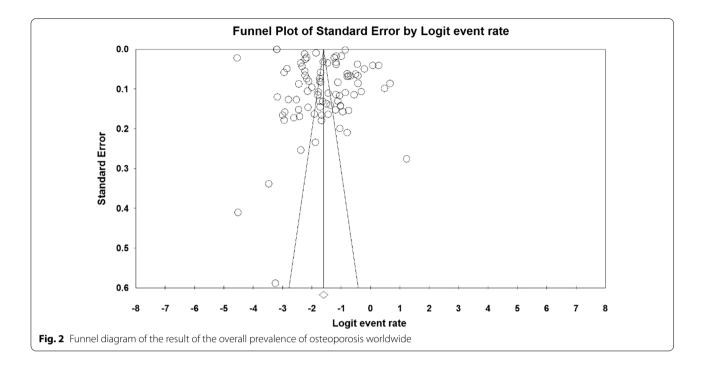
	ומסוב ו שמוווווומו ל טו בוומומבנבוושנובש טו ווובוממבמ שנמטבש											
Row number	Author	Year	Continent	Country	Diagnosis tool	Location of diagnosis	Cut-off	Study population	ε	3	Age OP	0
	Hyun Kao Uaan [22]	2001	Asia	Tae-An Korea	BUA by QUS2	Calcaneus	T≤ - 2.5	298	0	298	35-65	6
2	Sireen Shilbayeh [23]	2003	Asia	Jordan	BMD by DXA	Femoral neck, Iumbar spine	T≤-2.5	400	0	400	19–89	119
m	XP. WU [4]	2003	Asia	China	SOS	Tibial	$T \leq -2.5$	1596	0	1596	46.5	173
4	Vu Thi Thu Hien [16]	2005	Asia	Vietnam	SOS	Calcaneus	$T \le -3.8$	2232	0	2232	20	343
2	Sarath Lekam- wasam [24]	2006	Asia	Sri Lanka	BMD by DXA	Spine, femoral neck	$T \leq -2$	1642	0	1642	I> 50	736
9	G. Chhibber [25]	2006	Asia	Dehli and Haryana (INDIA)	BMD by DXA	Forearm, hip	$T \le -2.5$	430	0	430	60–80	265
7	Mahmoud I. El- Desouki [21]	2007	Asia	Saudi Arabia	BMD by DXA	Lumbar spine, femoral neck	$T \le -2.5$	429	429	0	30-90	101
œ	Nan-Ping Yang [1 <mark>9</mark>]	2006	Asia	Taiwan	BMD by DXA	Lumbar, hip	$T \le -2.5$	33,633	17,583	16,050	I> 50	2109
6	Abdulbari Bener [26]	2007	Asia	Qatar	BMD by DXA	Spine, femur	$T \le -2.5$	821	0	821	20-70	42
10	Didem Arslantas [27]	2008	Asia	Turkey	BMD by DXA	Hip	T≤ − 1.8	1437	571	866	40-89	216
11	Montchai Chum- numnawin [28]	2008	Asia	Bangkok-Thaiwan (Priests)	BMD by DXA	Hip	$T \le -2.5$	659	659	0	≥20	33
12	S. Miura [29]	2008	Asia	Philippines	SOS	Calcaneus	$T \le -1.79$	339	0	339	40-89	67
13	P. Shokrollahi [30]	2008	Asia	IRAN, SHIRAZ	BMD by DXA	BMD		75	0	75	<u>></u> 55	58
14	M. Fatima [<mark>3</mark> 1]	2009	Asia	Pakistan	BMD by SOS	Calcaneus	$T \le -2.5$	334	0	334	20-60	43
15	Sarath Lekam- wasam [32]	2009	Asia	Sri Lanka	BMD by DXA	Middle phalanx of the middle finger of the non-domi- nant hand	<i>T</i> ≤ − 2.5	1147	1147	0	50-84	66
16	Aranjan Lionel Karunanayake [33]	2010	Asia	Sri Lanka	BMD by DXA	Lumbar spine, hip	T≤-2.5	700	279	421	35-64	101
17	A. Neema [34]	2010	Asia	Wardha, India	BMD by SOS	Calcaneus	$T \le -1.8$	1122	0	1122	40-60	173
18	Shafaq Zahoor [<mark>35</mark>]	2010	Asia	Pakistan	BMD by DXA	Heel	$T \le -2.5$	240	0	240	≥ 49	56
19	Neelam Aggarwal [36]	2011	Asia	Chandigarh, India	BMD by DXA	Lumbar spine, femoral neck, and total spine	T≤ - 2.5	200	0	200	145	56
20	Zhifeng Sheng [<mark>37</mark>]	2011	Asia	Chine	BMD by DXA	Lumbarspine, left femoral	$T \le -2.5$	954	0	954	50-82	376
21	Yong Jun Choi [38]	2012	Asia	Korea	BMD by DXA	Lumbar spine, total femur, femur neck	T≤-2.5	4946	2095	2851	≥ 50	1169

 Table 1
 Summary of characteristics of included studies

(continued)	
-	
<u>e</u>	
9	
Ta	

Row number	Author	Year	Continent	Country	Diagnosis tool	Location of diagnosis	Cut-off	Study population	E	м	Age	do
22	Kyae Hyung Kim [39]	2012	Asia	Korea	BMD by DXA	Lumbar spine, femoral neck	$T \le -2.5$	2870	0	2870	250	1122
23	Zhang Mengmeng [40]	2012	Asia	Changchun, China	BMD by DXA	Distal, forearm	Т	16,019	7286	8733	20-89	4313
24	Zahra Pourhashem [41]	2012	Asia	Amirkola, Iran	BMD by DXA	Femur, spine, femoral, lumbar	$T \le -2.5$	193	105	88	60-88	62
25	S. Tuzun [42]	2012	Asia	Turkey	BMD by DXA	Lumbar spine, proximal femur (neck, total), femo- ral neck	T≤-2.5	1965	944	1021	1> 50	202
26	Neeraj Kumar Agrawal [43]	2013	Asia	India	BMD by DXA	Right femur, neck, trochanter, total hip	T≤−2.5	200	200	0	> 50	17
27	Maj Tripti Agrawal [44]	2013	Asia	India	BMD by QUS	Calcaneus (heel)	$T \le -2.5$	158	0	158	35-64	21
28	Maninder Kaur [45]	2013	Asia	North, India	BMD by DXA	Lumbar spine	$T \le -2.5$	250	0	250	45-80	99
29	Jongseok Lee [46]	2013	Asia	Korea	BMD by DXA	Femoral neck, Iumbar spine	$T \le -2.5$	17,205	7837	9368	10_89	4077
30	Yaşar Keskin [47]	2014	Asia	Turkey	BMD by MetriScan device	Middle phalanges of the second, third, and fourth digits of the non- dominant hand	T≤ - 2.5	620	122	498	40-89	88
31	Kyung-Shik Lee [48]	2014	Asia	Korea	BMD by DXA	Total hip, femoral neck, total lumbar spine	T≤ - 2.5	11,142	5355	5787	>50	2557
32	Eun Jung Park [49]	2014		Korea	BMD by DXA	Lumbar spine, femoral neck, tro- chanter, total hip	T≤ - 2.5	7425	3414	4011	>50	1773
33	Edith Ming Chu Lau [50]	2015	Asia	China	BMD by DXA	Lumbar spine, total hip, femoral neck	$T \le -2.5$	12,401	0	12,401	50-89	2798
34	Cathy Nga Yan Lee [13]	2015	Asia	Hong Kong	BMD by DXA	Heel	$T \le -2.5$	80	22	58	41.6	m
35	Zahra Moham- madi [51]	2015	Asia	Kurdistan, Iran	BMD by DXA	Lumbar spine, hip, femoral neck	$T \le -2.5$	306	403	629	≥50	123
36	Marzieh Saei Ghare Naz [<mark>5</mark> 2]	2015	Asia	Urmia, Iran	BMD by DXA	Femoral neck, Iumbar spine	$T \le -2.5$	292	0	292	> 50	152

Table 1 (continued)	ntinued)											
Row number Author	Author	Year	Continent	Country	Diagnosis tool	Location of diagnosis	Cut-off	Study population	ε	3	Age	do
37	Yan-Jiao Wang [53]	2015	Asia	China	BMD by DXA	Lumbar spine, femoral neck	$T \le -2.5$	316	164	152	≥65	78
38	Khurshid A. Bhat [54]	2018	Asia	INDIA	BMD by DXA	Lumbar, total hip, femur neck	$T \le -2.5$	241	241	0	> 60	46
39	Yi-Chien Lu [55]	2016	Asia	Taiwan, China	BMD by DXA	Lumbar spine, femoral neck, both	T_usa ≤ - 2.5 T_Asia ≤ - 2.5	3740	2028	1712	≥ 50	886 271
40	Sung Bae Park [15]	2016	Asia	Korea	BMD by DXA	Spine, hip, or wrist	$T \leq -2.5$	51,169,141	I	I	All	2,018,236
41	Sung Bae Park [15]	2016	Asia	Korea	BMD by DXA	Spine, hip, or wrist	$T \leq -2.5$	50,908,646	I	I	All	2,018,437
42	Dana Hyassat [56]	2017	Asia	Amman, Jordan	BMD by DXA	Total, lumbar spine, left femoral neck	$T \le -2.5$	1079	0	1079	45-84	405
43	Yu-Jun Kwon [57]	2017	Asia	Korea	BMD	Heel	$T \le -2.5$	595	157	438	51-94	393
44	Gul Pinar [7]	2017	Asia	Turkey	BMD by DXA	Femoral neck, Iumbar spine	$T \le -2.5$	1792	0	1792	18-49	72
45	Limin Tian [58]	2017	Asia	Northwestern of China	BMD by DXA	Distal one-third radius of the forearm	T≤ - 2.5	6564	3205	3359	40	583
46	Muhammad Farhan Abbas [59]	2018	Asia	Pakistan	BMD by X-rays	Questionnaire	$T \le -2.5$	360	0	360	≥15 15	152
47	Parvin Cheraghi [60]	2018	Asia	Hamedan, Iran	BMD by DXA		$T \le -2.5$	1779	1077	702	≥60	142
48	Nidhi S. Kadam [61]	2018	Asia	Pune City, India	BMD by DXA	Lumbar spine, femoral neck, total hip	T≤-2.5	421	193	228	40-75	69
49	Neelam Kaushal [18]	2018	Asia	INDIA	BMD by DXA	Lumbar spine, femur neck, total femur	T≤-2.5	524	306	216	20-85	36
50	Chi-Hua Ko [20]	2018	Asia	Taiwan	BMD by DXA	Hip (total), lumbar spine, femoral neck	T≤-2.5	3734	3734	0	250	362
51	P. Modagan [17]	2018	Asia	INDIA	BMD by DXA	Proximal femur (total hip, femoral neck, shaft, Ward's triangle, trochanter), anter- oposterior (AP) lumbar spine	<i>T</i> ≤ − 2.5	773	380	393	30-90	191
52	Nayer Seyfizadeh [62]	2016 Asia		Iran	BMD by DXA	Lumbar spine, femoral neck	$T \le -2.5$	066			55-92	307


Salari et al. J Orthop Surg Res (2021) 16:609 Page 8 of 20

(continued)	
-	
<u>e</u>	
9	
Ta	

Row number Author	Author	Year	Continent	Country	Diagnosis tool	Location of diagnosis	Cut-off	Study population	ε	3	Age	ď
53	Jung Eun Yoo [63]	2018	Asia	Korea	BMD by DXA	Femoral neck, total femur, lum- bar spine	T≤ - 2.5	6104	6104	0	1> 30	305
54	Abdulaziz Ahmed Abdulaziz [64]	2019	Asia	saudi arabia	BMD by DXA	Lumbar spine, neck femur	$T \le -2.5$	131	131		> 60	34
55	Zaheer Ahmed Mohammed [64]	2019	Asia	MAJMAAH, Saudi	BMD by DXA	Hip, spine (online questionnaire)	$T \le -2.5$	593	110	483	20	47
56	K. Padmanabhan [65]	2019	Asia	Chennai, India	BMD by DXA	Calcaneus heel	$T \le -2.5$	270	0	270	30-70	43
57	Hasanga Rathnay- ake [66]	2019	Asia	Sri Lanka	BMD by DXA	Spine, femoral neck, total hip	$T \leq -2.5$	176	0	355	≥ 50	65
58	Shriraj Shrestha [67]	2019	Asia	Hospital in Nepal	BUA and SOS by QUS	Centre of the bone	$T \le -2.5$	464	141	323	41.02	38
59	Shaanthana Subra- maniam [68]	2019	Asia	Malaysia	BMD by DXA	Lumbar spine, total hip	$T \le -2.5$	367	182	185	> 40	56
60	Peizhi Wang [69]	2019	Asia	Singapore	Self-assessment tool	Self-assessment tool	High-Risk Index (female) < - 4, High-Risk Index (male) < - 6	2345	1052	1293	60-105	1218
61	Qiang Zeng [70]	2019	Asia	China	BMD by DXA	Lumbar spine, Femoral neck, Total femur	T≤ − 2.5	41,347	40,944	34,377	> 50	7211
62	Kyeong Jin Kim [71]	2020	Asia	Korea	BMD by DXA	Lumbar spine, femur neck, total hip	T≤ − 2.5	208	0	488	>50	52
63	Mamatov Sagynali Murzaevich [<mark>72</mark>]	2020	Asia	Kyrgyz	BMD by ultra- sound bone densitometer		T≤ −2.5	1200	509	691	18-79	179
64	Qian Zhang [8]	2020	Asia	Shanghai, China	BMD by DXA	Proximal femur, lumbar vertebrae	$T \le -2.5$	565	231	334	70-95	223
65	Florent Richy [73]	2004	Europe	Belgium	BMD by DXA	Total femur, femo- ral neck, lumbar spine	T <u>≤</u> – 2.5	311	311	0	30-91	63
66	Eric Lespessailles [74]	2009	Europe	France	BMD by DXA	Hip, spine, wrist by face-to-face interviews	T≤ - 2.5	2613	0	2613	245	254
67	Henrik G Ahlborg [75]	2010	Europe	Malmö, Sweden	BMD by single- photon	Distal radius, forearm	$T \le -2.5$	459	0	459	> 50	69

(continued)	
-	
Ð	
Q	
Ta	

Row number	Author	Year	Continent	Country	Diagnosis tool	Location of diagnosis	Cut-off	Study population	E	Ŋ	Age (ОР
68	Patrizia D'Amelio [76]	2013	Europe	ltaly	BMD by DXA	Lumbar spine, femoral neck	$T \le -2.5$	995	0	995	45–92	335
69	E. J. Marjanovic [77]	2013	Europe	UK	BMD by DXA	Proximal femur, Iumbar spine	$T \le -2.5$	380	0	380	45-65	98
70	Marıa-Jesus Gómez-de-Tejada Romero [78]	2013	Europe	Spain	BMD by DXA	Lumbar spine, femoral neck	T≤-2.5	1229	0	1229	250	383
71	Loredana Cavalli [79]	2016	Europe	Italy	BMD by QUS	Heel	$T \le -2.5$	7305	1191	6114	17–97	1212
72	Marie-Therese Puth [80]	2018	Europe	Germany	telephone survey	Self-reported		10,660	4961	5699	l> 50	911
73	B. R. Nielsen [81]	2020	Europe	Denmark	BMD by DXA	Spine and hip	$T \le -2.5$	529	232	297	≥ 65	101
74	Alexandre Faisal- Cury [6]	2007	America	Sao Paulo	BMD	Femur, hip	$T \le -2.5$	666	0	666	50-96	320
75	Julie Robitaille [82]	2008	America	U.S.	By a physician in the household	Household inter- view	By a physician	8073	0	8073	20	442
76	H. Cheng [14]	2009	America	AMERICA	BMD by DXA	Medicare data		911,327	359,733	551,594	≥65	270,907
77	Arthur Swislocki [83]	2010	America	Nursing Home, United States	BMD by DXA	Lumbar spine, total hip, femoral neck	$T \le -2.5$	106	106	0	>50	33
78	John Londono [84]	2013	America	Colombia	BMD by DXA	Lumbar vertebrae, femur neck	$T \le -2.5$	795	0	795	35–53	38
79	Robert Ferrari [85]	2015	America	Canada	BMD by DXA	Hip, lumbar spine	$T \le -2.5$	557	557	0	65-75	9
80	Carlos Mautalen [86]	2016	America	Buenos Aires, Argentina	BMD by DXA	Lumbar spine, femoral neck	$T \le -2.5$	5448	0	5448	> 50	1021
81	Sabrina E. Noel [87]	2018	America	USA	BMD by DXA	Femoral neck, lumbar spine	$T \le -2.5$	953	273	680	47-79	100
82	Ricardo M. Lima [88]	2019	America	Brezil	BMD by DXA	Lumbar spine, femoral neck	$T \le -2.5$	234	0	234	68.3	37
83	T. O. Alonge [89]	2017	Africa	Nigeria	BMD by DXA	Right wrist	$T \le -2.5$	2401	964	1437	≥ 60	1366
84	P. O. Ezeonu [90]	2017	Africa	South-East Nigeria	BMD	Right calcaneal bone	$T \le -2.5$	327	0	327	18-44	119
85	Fred Chuma Sitati [91]	2020	Africa	Kenya, African	BMD by DXA	Lumbar spine, hip	$T \le -2.5$	254	0	254	50-95	67
86	E. P. Boschitsch [92]	2017	Australia	Australia	BMD by DXA	Hip, the distal fore- arm, vertebrae	$T \le -2.5$	66'366	0	99,399	>40	13,444

Prevalence of osteoporosis in men

In Fig. 5, based on 40 studies and sample size were 453,964 men and heterogenicity (I^2 : 99.3), the prevalence of osteoporosis in men of the world was reported to be 11.7 (95% CI 9.6–14.1). According to the results of Begg and Mazumdar's test at a significance level of 0.1, no bias was observed in the results of the prevalence of osteoporosis in men worldwide in this study (P=0.448). The analysis of the prevalence of osteoporosis by sex on each continent is reported in Table 3.

Meta-regression test

Given that the overall prevalence based on meta-analysis is influenced by factors such as sample size, year of research, age of study participants, place of study and gender, these factors increase heterogeneity and decrease the accuracy of results. Therefore, meta-regression analysis, as well as subgroup analysis, were used to examine the relationship between osteoporosis and this factors. Due to the effect of various factors in the incidence of heterogeneity between the results of osteoporosis studies globally, a meta-regression test was used to examine the effect of three factors: sample size, year of study, and age of the participants. According to Fig. 6, the prevalence of osteoporosis decreases with increasing the sample size, and this is statistically significant (P < 0.05). Moreover, Fig. 7 shows that the prevalence of osteoporosis decreases with increasing years of study, which is statistically significant (P < 0.05). The results reported in Fig. 8 show that the prevalence of osteoporosis studies in the world increases with age, which was also statistically significant (P < 0.05).

Discussion

In this study, the prevalence of osteoporosis in the world was 18.3%, which is calculated based on reports of the prevalence of osteoporosis from 86 studies across five continents. Although the number of reported epidemiological studies on osteoporosis in Africa is limited, recent studies have shown that osteoporosis and related fractures increase across the continent [93]. Therefore, based on the results of this study, it was revealed that the prevalence of osteoporosis in Africa is much worse than that in other continents.

According to a systematic and meta-analysis study in China, the prevalence of osteoporosis from 2003 to October 2015 was reported to be 15.33% in men and 25.41% in women. It can be concluded that the overall prevalence of osteoporosis was 20% [94].

In a study, the prevalence of osteoporosis was assessed in several industrialized countries (USA, Canada, five European countries, Australia, and Japan) and people aged 50 and over. The prevalence of osteoporosis in the spine or hip was reported as follows: 26.3% in Japan, 21% in the USA, 14.3% in Germany, 9.9% in France, 9.7% in Italy, 7.8% in the United Kingdom, 6.3% in Spain, 2.6% in Canada, and 2% in Australia. Overall, the number of people with osteoporosis is estimated at 49 million [95].

In 2018, a systematic review and meta-analysis based on the World Health Organization (WHO) diagnostic

	Study name		Statis	tics for e	each study		E	vent rate and 95% C		
Norma 0.00 0.01 0.01 0.02 0.02 Norma 0.00 0.01 0.01 0.01 0.01 Norma 0.00 0.01 0.01 0.01 0.01 Norma 0.00 0.01 0.01 0.01 0.01 Norma 0.01 0.01 0.01 0.01 0.01 0.01 Norma 0.01 0.01 0.01 0.01 0.01 0.01 0.01 Norma 0.01 0.01 0.01 0.01 0.01 0.01 0.01 Norma 0.01			Lower	Upper		n-Value				
YW NW NW NW NW NW NW NW NW NW NW NW NW NW NW NW DNM NW NW NW NW NW NW NW DNM NW NW NW NW NW NW NW DNM NW NW NW NW NW NW NW NW NW NW	Hyun Koo Uoon						1		II	I I
The Hum 0.54 0.13 0.10 2.90 0.00 The Hum 0.54 0.23 0.10 2.90 0.00 minus List 0.00 0.01 0.10 0.00 0.01 minus List 0.00 0.01 0.10 0.02 0.00 minus List 0.00 0.01 0.10 0.00 0.01 Minus List 0.00 0.01 0.10 0.01 0.01 0.01 Minus List 0.00 0.01 0.01 0.01 0.01 0.01 0.01 Minus Hist 0.00 0.01 0.01 0.01 0.01 0.01 0.01 Minus Hist 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 Minus Hist 0.01	Sireen Shilbayeh	0.298	0.255	0.344	7.856-					
Chelber (1997) 1934 1934 1935 1935 1935 1935 1935 1935 1935 1935	Vu Thi Thu Hien			0.169	29.068-	0.000				i i
hamodi Felovacki 0, 223 0, 103 0, 102 0, 224 0, 000 0, 107 0, 244 0, 000 0, 107 0, 244 0, 000 0, 107 0, 244 0, 000 0, 107 0, 244 0, 000 0, 107 0, 244 0, 000 0, 107 0, 244 0, 000 0, 107 0, 244 0, 000 0, 107 0, 244 0, 000 0, 107 0, 240 0, 000 0, 107 0, 240 0, 000 0, 107 0, 240 0, 000 0, 107 0, 240 0, 000 0, 107 0, 240 0, 000 0, 107 0, 240 0, 000 0, 107 0, 240 0, 000 0, 107 0, 240 0, 000 0, 107 0, 240 0, 000 0, 107 0, 240 0, 000 0, 107 0, 240 0, 000 0, 107 0, 100	Sarath LEKAMWASAM G Chhibber							-		
date in Elevier 0.60 1.84 0.00 Maxe 0.10 0.17	Mahmoud I El-Desouki	0.235	0.198	0.278	10.351-	0.000			H 1	i i
ten Arabins bin A	Nan-Ping Yang Abdulbari BENER									
Mane 0.19 0.19 0.24 0.27 0.00 Mane 0.19 0.19 0.14 0.00 0.01 0.01 Male 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 Male 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 Male 0.01 0	Didem Arslantas	0.150	0.133	0.170	23.466-	0.000				i i
Bakudahini 0, 777 0, 080 0, 085 4, 4.450 0, 000 Hum Ma mana 1, 1770 0, 080 0, 085 4, 1770 0, 000 Hum Ma mana 1,	Montchai Chumnumnawin S. Miura									
rath Les Markenseem 0.068 0.073 2.2522 0.000 many Markenseem 0.123 0.124 0.127 0.738 0.000 many Markenseem 0.123 0.124 0.127 0.738 0.000 frag Starting 0.240 0.220 0.220 0.248 0.546 0.000 many Maryensee 0.220 0.220 0.248 0.546 0.000 many Maryensee 0.220 0.221 0.223 0.748 0.200 many Maryensee 0.220 0.221 0.223 0.748 0.200 many Maryensee 0.220 0.221 0.221 0.221 0.221 0.221 many Maryensee 0.220 0.221 0.221 0.221 0.221 0.221 many Maryensee 0.220 0.221 0.221 0.221 0.221 0.221 0.221 many Maryensee 0.220 0.22 0.227 0.423 0.000 many Maryensee 0.220 0.22 0.227 0.000	P Shokrollahi	0.773	0.665	0.854	4.450	0.000			■ >	1
mighe Londin (AREUNANAYAKE 0.44 0.12 0.72 16.84 0.000 data Zanosa mighe Londin (2000) 0.22 0.22 0.24 0.850 0.000 mg Jan Chai mg Jan	Fatima M Sarath Lekamwasam									i i
afar Zahoor 0, 023 0, 11 0, 021 7, 756 0, 000 firm Sherny 0, 026 0, 022 0, 024 5, 557 0, 000 firm Sherny 0, 026 0, 027 0, 026 0, 000 ang Mengueneng 0, 026 0, 027 0, 026 0, 000 ang Mengueneng 0, 026 0, 027 0, 026 0, 000 Trau Menutation 0, 026 0, 021 0, 023 0, 026 0, 000 tripol Argana 1, 026 0, 021 0, 023 0, 026 0, 000 tripol Argana 1, 026 0, 021 0, 023 0, 026 0, 000 tripol Argana 1, 026 0, 021 0, 023 0, 026 0, 000 tripol Argana 1, 026 0, 021 0, 023 0, 026 0, 000 tripol Argana 1, 026 0, 021 0, 023 0, 026 0, 000 tripol Argana 1, 026 0, 021 0, 023 0, 026 0, 000 tripol Argana 1, 026 0, 021 0, 023 0, 026 0, 000 tripol Argana 1, 026 0, 021 0, 023 0, 026 0, 000 tripol Argana 1, 026 0, 021 0, 023 0, 026 0, 000 tripol Argana 1, 026 0, 021 0, 023 0, 026 0, 000 tripol Argana 1, 026 0, 021 0, 023 0, 026 0, 000 tripol Argana 1, 026 0, 021 0, 023 0, 026 0, 000 tripol Argana 1, 026 0, 021 0, 023 0, 026 0, 000 tripol Argana 1, 026 0, 021 0, 023 0, 000 tripol Argana 1, 026 0, 021 0, 023 0, 000 tripol Argana 1, 026 0, 021 0, 023 0, 000 tripol Argana 1, 026 0, 021 0, 023 0, 000 tripol Argana 1, 026 0, 021 0, 023 0, 000 tripol Argana 1, 026 0, 021 0, 023 0, 000 tripol Argana 1, 026 0, 021 0, 023 0, 000 tripol Argana 1, 026 0, 021 0, 023 0, 000 tripol Brie Machana 0, 020 0, 020 0, 024 0, 020 0, 000 tripol Brie Machana 0, 020 0, 020 0, 020 0, 020 0, 000 tripol Brie Machana 0, 020 0, 020 0, 020 0, 020 0, 000 tripol Brie Machana 0, 020 0, 020 0, 020 0, 020 0, 000 tripol Brie Machana 0, 020 0, 020 0, 020 0, 020 0, 020 0, 020 0, 020 0, 020 0, 020 0, 020 0, 020 0, 020 0, 020 0, 020 0, 020 0, 020 0, 020 0, 020 0, 000 tripol Brie Machana 0, 020	Aranjan Lionel KARUNANAYAKE	0.144	0.120	0.172	16.549-	0.000				
tieng Sheing 0.049 0.39 0.28 0.28 0.28 0.28 0.000 bai hyung 0.0150 0.37 0.26 1152 0.000 11 Tipi Agnani 0.013 0.37 0.26 1152 0.000 11 Tipi Agnani 0.013 0.37 0.27 0.27 0.200 11 Tipi Agnani 0.013 0.27 0.27 0.27 0.200 11 Tipi Agnani 0.020 0.27 0.27 0.27 0.200 7ar KESTN 0.022 0.22 0.27 0.27 0.27 0.000 7ar KESTN 0.022 0.22 0.27 0.27 0.07 0.000 7ar KESTN 0.022 0.22 0.27 0.27 0.000 7ar KESTN 0.022 0.22 0.27 0.27 0.000 7ar KESTN 0.022 0.22 0.27 0.27 0.000 7ar KESTN 0.020 0.000 7ar KESTN 0.020 0.000 7ar KESTN 0.000 7ar KESTN 0.000 0.001 0.000 7ar KESTN 0.000 0.000 0.001 1.0000 7ar KESTN 0.000 0.000 0.000 0.000 7ar KESTN 0.000 0.000 0.000 0.000 0.000 7ar KESTN 0.000 0.000 0.000 0.000 0.0000 7ar KESTN 0.0000 0.000 0.000 0.000 0.0000 7ar	A Neema Shafaq Zahoor									
ng Jun Chai 0.258 0.259 0.269 0.469 0.1500 0.000 ng Mar Manganganganganganganganganganganganganga	Neelam Aggarwal								▝▇╴▖▕	
ang Mengingang 0, 229 0, 227 0, 276 0, 60.64 0, 0000 Traum meneric 0, 010 0, 001 0, 177 2, 24.64 0, 0000 Traum meneric 0, 029 0, 217 2, 24.64 0, 0000 1960 Aryana 0, 229 0, 221 0, 231 0, 232 7, 146 0, 0000 mender Kaura 0, 224 0, 210 0, 221 0, 233 0, 72.01 0, 0000 thir Mag Sak Lea 0, 220 0, 221 0, 231 0, 73.01 0, 0000 thir Mag Sak Lea 0, 222 0, 221 0, 233 0, 73.01 0, 0000 thir Mag Sak Lea 0, 221 0, 221 0, 231 0, 73.01 0, 0000 thir Mag Sak Lea 0, 220 0, 221 0, 231 0, 73.01 0, 0000 thir Mag Sak Lea 0, 220 0, 221 0, 231 0, 73.01 0, 0000 thir Mag Sak Lea 0, 220 0, 221 0, 231 0, 73.01 0, 0000 thir Mag Sak Lea 0, 220 0, 221 0, 231 0, 73.01 0, 0000 thir Mag Sak Lea 0, 220 0, 221 0, 231 0, 73.01 0, 0000 thir Mag Sak Lea 0, 220 0, 221 0, 231 0, 73.01 0, 0000 thir Mag Sak Lea 0, 220 0, 221 0, 231 0, 73.01 0, 0000 mag Bae Park-1 0, 030 0, 039 4, 443.080 0, 0000 thir Mag Sak Lea 0, 220 0, 221 0, 234 0, 74.00 0, 0000 mag Bae Park-1 0, 030 0, 039 4, 443.080 0, 0000 thir Mag Sak Lea 0, 0000 mag Bae Park-1 0, 030 0, 039 4, 443.080 0, 0000 thir Mag Sak Lea 0, 0000 t	Znireng Sneng Yong Jun Choi									
ha Pour Agramal 0.31 0.250 0.300 4.853 0.000 errg (Kurma Agramal 0.08 0.033 0.12 9.372 0.000 pring Kurma Agramal 0.08 0.033 0.12 9.372 0.000 pring Kurma Agramal 0.08 0.033 0.12 9.372 0.000 pring Kurma 0.08 0.27 0.21 0.23 0.572 0.000 pring Kurma 0.22 0.22 0.27 0.376 0.000 pring Kurma 0.22 0.22 0.27 0.576 0.000 pring Kurma 0.22 0.22 0.27 0.585 0.000 pring Kurma 0.22 0.02 0.000 pring Kurma 0.20 0.000 0.000 0.000 0.000 pring Kurma 0.000 0.000 0.000 0.000 0.000 0.000 pring Kurma 0.000 0.000 0.000 0.000 0.000 pring Kurma 0.000 0.000 0.000 0.000 0.000 pring Kurma 0.000 0.000 0.000 0.000 0.000 pring Kurma 0.000 0.000 0.000 0.000 pring Kurma 0.000 0.000 0.000 0.000 0.0000 pring Kurma 0.000 0.000 0.000 0.0000 pring Kurma 0.000 0.000 0.000 0.0000 pring Kurma 0.000 0.000 0	Kyae Hyung Kim								▔▖▕▋▕	
remain Variantia 0.065 0.132 0.272 0.000 minder Kaur 0.261 0.231 0.221 7.146 0.000 minder Kaur 0.261 0.231 0.221 7.146 0.000 minder Kaur 0.262 0.221 0.231 0.221 0.211 minder Kaur 0.262 0.221 0.231 0.211 0.514 minder Kaur 0.262 0.221 0.231 0.514 0.000 minder Kaur 0.262 0.221 0.231 0.514 0.000 minder Kaur 0.262 0.221 0.237 0.510 0.000 minder Kaur 0.261 0.267 0.267 0.000 0.000 minder Kaur 0.261 0.267 0.267 0.000 0.000 minder Kaur 0.261 0.267 0.267 0.000 0.000 minder Kaur 0.010 0.014 0.277 0.288 0.000 minder Kaur 0.020 0.021 0.021 <td>Zahra Pourhashem</td> <td></td> <td></td> <td></td> <td></td> <td>0.000</td> <td></td> <td></td> <td></td> <td>i i</td>	Zahra Pourhashem					0.000				i i
I) Tipid Agriwai 0.13 0.088 0.15 9.003 0.000 ngaeok. Les 0.27 0.21 0.22 0.24 0.23 0.24 0.21 0.22 n.01 0.000 <	S. Tuzun	0.103	0.090	0.117	29.166-	0.000			-	1
ngseek Lee 0,27 0,21 0,24 0,22 0,27 3,76 0,000 min Mang Dark Lee 0,22 0,27 3,76 0,000 min Mang Dark Lee 0,22 0,27 5,76 0,000 min Mang Dark Lee 0,27 0,20 0,27 5,87 0,000 min Mang Dark Lee 0,27 0,20 0,20 5,368 0,000 min Mang Dark Lee 0,27 0,20 0,20 1,158 0,000 min Mang Dark Lee 0,27 0,20 0,20 1,158 0,000 min Mang Dark Lee 0,20 0,20 0,20 0,20 0,20 0,20 0,20 0,	Maj Tripti Agrawal	0.133	0.088	0.195	8.003-	0.000				1
Dark KES (Wh 0.142 0.117 0.172 15.835 0.000 Jung Park 0.239 0.237 0.337 0.376 0.000 Jung Park 0.239 0.237 0.337 0.376 0.000 Min Marchu 0.230 0.241 0.240 0.241 0.240 0.241	Maninder Kaur Jongseok Lee									1
n Jung Park 0239 0229 0249 42.591 0000 thy Mag Nan LEE 0038 012 0110 5514 0000 thy Mag Nan LEE 0038 0142 0136 0457 0170 0170 0460 traden Sand Charee Maz 0527 0460 045 0457 0170 0170 0460 traden Sand Charee Maz 0527 0460 045 0457 0170 0170 0460 traden Sand Charee Maz 0527 0460 045 0457 0170 0170 0460 traden Sand Charee Maz 0527 0460 045 0457 0170 0170 0460 traden Sand Charee Maz 0557 0460 045 0457 0460 traden Sand Charee Maz 0557 0460 045 0457 0456 0450 traden Sand Charee Maz 0557 0460 045 0457 0456 0450 traden Sand Charee Maz 0557 0460 0450 0458 0450 0450 traden Sand Charee Maz 0557 0456 0450 0450 0450 traden Sand Charee Maz 0557 0456 0450 0450 traden Sand Charee Maz 0550 0450 0458 0450 0450 traden Sand Charee Maz 0550 0450 0458 0450 0450 traden Sand Charee Maz 0550 0450 0458 0450 0450 traden Sand Charee Maz 0550 0458 0450 0450 traden Sand Charee Maz 0450 0458 0457 0450 traden Sand 0450 0450 0458 0457 0450 0450 traden Sand 0450 0450 0458 0457 0450 traden Sand 0450 0450 0458 0450 0450 traden Sand 0450 0450 0458 0458 0450 0450 traden Sand 0450 0450 0458 0458 0450 traden Sand 0450 0450 0450 0458 0450 0450 traden Sand 0450 0450 0450 0458 0450 0450 traden Sand 0450 0450 0450 0450 0450 0450 0450 traden Sand 0450 0450 0450 0450 0450 0450 traden Sand 0450 0450 0450 0450 0450 0450 0450 traden Sand 0450 0450 0450 0450 0450 0450 0450 traden Sand 0450 0450 0450 0450	Ya?ar KESK?N	0.142	0.117	0.172	15.635-	0.000		🔳		1
lith Ming Chu Lau 0.226 0.21 0.23 57.401 0.000 thris McMammadi 0.402 0.34 0.48 3.400 0.001 thris McMammadi 0.402 0.34 0.48 3.400 0.001 thris McMang 0.247 0.20 0.27 8.550 0.000 mg Bae Park-1 0.053 0.39 0.39 0.38 4.445.508 0.000 mg Bae Park-1 0.058 0.000 0.040 4.427.508 0.000 mg Bae Park-1 0.000 0.040 0.020 0.048 0.000 mg Bae Park-2 0.040 0.000 0.040 0.000 0.000 mg Bae Park-1 0.000 0.040 0.000 0.040 0.000 mg Bae Park-1 0.000 0.000 0.040 0.000 0.000 mg Bae Park-1 0.000 0.000 0.000 0.000 0.000 0.000 mg Bae Park-1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 mg Bae Park-1 0.000 0	Kyung-Shik Lee Eun Jung Park									1
hrá Mohammadi 0, 402 0,34 0,48 0,40 0,001 m-Jelo Wang 0,247 0,22 0,29 0,27 0,26 0,48 m-Jelo Wang 0,247 0,22 0,29 0,25 0,000 m-Jelo Wang 0,247 0,20 0,29 0,25 0,000 Chen Lu2 0,15 0,14 0,16 0,29 0,25 0,000 Jelo Ba Part 1 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 Jelo Ba Da	Edith Ming Chu Lau	0.226	0.218	0.233	57.401-	0.000				
nzieh Sai Chare Naz 0.221 0.463 0.77 0.702 0.483 murbia A. Bhat 0.191 0.146 0.247 0.279 0.550 0.000 murbia A. Bhat 0.191 0.146 0.247 0.550 0.000 mg Bae Fark-1 0.030 0.039 0.039 4.445.308 0.000 ma Hyssat 0.077 0.047 0.046 0.404 4.375.11 0.000 hin Tan 0.046 0.052 0.059 0.248 0.000 min Tan 0.046 0.052 0.059 0.248 0.000 min Tan 0.046 0.050 0.059 0.045 0.000 min Tan 0.046 0.050 0.059 0.044 0.000 min Tan 0.046 0.050 0.044 0.056 0.000 min Tan 0.046 0.050 0.044 0.056 0.000 min Tan 0.046 0.050 0.044 0.050 0.000 min Tan 0.046 0.050 0.044 0.000 min Tan 0.046 0.050 0.044 0.000 min Tan 0.046 0.050 0.044 0.056 0.000 mg Eur Yoo 0.050 0.044 0.056 0.013 0.000 mg Eur Yoo 0.050 0.044 0.056 0.014 1.104 0.000 ma Zhang Mchanyek man Zhang 0.019 0.170 0.171 1.178 1.000 man Zhang 0.019 0.010 0.170 1.178 1.1870 0.000 ma nzhang Xabranaiam 0.153 0.171 0.178 1.1870 0.000 min Casaga Mchanyek 0.130 0.170 0.171 0.178 1.1870 0.000 min Casaga Mchanyek 0.130 0.170 0.172 0.178 1.1870 0.000 min Casaga Mchanyek 0.130 0.170 0.174 0.178 1.1870 0.000 min Casaga Mchan	Cathy Nga Yan LEE Zahra Mohammadi									
urshid A.B ^{mat} Orden Lu-2 ng Bae Park-1 0 039 0 039	Marzieh Saei Ghare Naz	0.521	0.463	0.577	0.702	0.483			<u>⊢</u> − ∢	1
ng Bae Park-1 0.039 0.039 0.039 0.039 0.445.306 0.000 na Hyasat 0.375 0.347 0.405 8.101 0.000 H Pinar 0.040 0.032 0.050 28.381 0.000 h Pinar 0.040 0.032 0.050 0.2474 2.939 0.003 h Pinar 0.040 0.050 0.044 1.534 0.000 h Pinar 0.040 0.050 0.044 1.534 0.000 h Pinar 0.040 0.050 0.044 1.1534 0.000 h Pinar 0.150 0.045 0.045 0.045 0.045 0.000 h Pinar 0.150 0.046 0.000 h Pinar 0.150 0.046 0.000 0.000 h Pinar 0.150 0.046 0.000 0.000 h Pinar 0.153 0.119 0.120 0.144 1.14275 0.000 h Pinar 0.150 0.150 0.120 0.144 1.14275 0.000 h Pinar 0.150 0.150 0.120 0.146 1.133 0.000 h Pinar 0.150 0.150 0.120 0.146 1.132 0.000 h Pinar 0.150 0.150 0.120 0.146 1.1329 0.000 h Pinar 0.150 0.120 0.166 0.137 0.21487 0.000 h mator 53gynali Murzaevich 0.149 0.150 0.170 2.1487 0.000 h mator 53gynali Murzaevich 0.149 0.150 0.120 0.166 1.12288 0.000 h mator 53gynali Murzaevich 0.149 0.150 0.120 0.166 1.12288 0.000 h mator 53gynali Murzaevich 0.149 0.150 0.120 0.166 0.1228 0.000 h mator 53gynali Murzaevich 0.147 0.120 0.126 0.138 0.175 5.1348 0.000 h M J Monjanovic 0.120 0.166 0.127 0.168 0.1288 0.000 h Londono 0.48 0.055 0.456 1.1088 0.000 h Londono 0.48 0.055 0.456 1.1088 0.000 h Londono 0.48 0.055 0.456 0.198 0.000 h Londono 0.48 0.055 0.456 0.198 0.000 h Londono 0.48 0.055 0.456 0.198 0.000 h Londono 0.48 0.055 0.456 0.578 0.000 h Dongo 0.580 0.580 0.580 0.580 0.590 0.5	Khurshid A. Bhat									
ng Bae Park-2 0,040 0,04 0,040 0,04 0,0	Yi-Chien Lu-2 Sung Roo Park 1								-	1
-Jun Kwon 0.661 0.621 0.697 7.688 0.000 H Pinar nin Tian 0.048 0.082 0.096 53.660 0.000 rin Charaphi 0.088 0.082 0.996 53.660 0.000 rivin Charaphi 0.080 0.083 0.27 9.46 0.000 lealam Kaushal 0.068 0.093 27.946 0.000 Modagan 0.247 0.218 0.279 13.361 0.000 Modagan 0.247 0.218 0.096 50.133 0.000 heer Ahmed Abdulaziz 0.260 0.055 0.046 50.133 0.000 heer Ahmed Abdulaziz 0.260 0.114 16.133 0.000 heer Ahmed Abdulaziz 0.260 0.114 16.220 0.000 heer Ahmed Abdulaziz 0.260 0.114 16.279 0.060 0.114 16.130 0.000 heer Ahmed Abdulaziz 0.260 0.114 1.275 0.000 her Ahmed Abdulaziz 0.260 0.114 1.275 0.000 her Ahmed Abdulaziz 0.260 0.114 1.275 0.000 her Ahmed Abdulaziz 0.260 0.114 1.275 0.000 hi 1.841 0.000 hi 2.260 0.115 0.116 0.120 0.166 0.120 0.120 0.166 0.000 hi 2.27 0.280 0.337 1.108- 0.000 hi 2.240 0.000 0.91 68.419- 0.000 hi 2.240 0.130 0.120 0.166 0.000 hi 2.240 0.000 0.91 68.419- 0.000 hi 2.240 0.130 0.130 0.132 0.242 0.000 hi 2.240 0.000 0.91 68.419- 0.000 hi 2.240 0.000 0.95 0.25 0.000 hi 2.240 0.000 0.25 0.25 0.000 hi 2.250 0.000 0.25 0.250 0.000 hi 2.250 0.000 0.2	Sung Bae Park-2	0.040	0.040	0.040	4437.511-	0.000				
d Pinar in Tan	Dana Hyassat Yuslun Kwon								■ ,	
hammad Farhan Abbas 0.422 0.372 0.474 2.339. 0.003 win Cheraghan 0.068 0.098 27.946 0.000 thi S. Kadam 0.164 0.132 0.202 12.377. 0.000 thi S. Kadam 0.069 0.050 0.094 15.094. 0.000 wiPhua Ko 0.097 0.088 0.107 40.349. 0.000 thi S. Kadam 0.247 0.218 0.279 13.361. 0.000 the Abdulaziz Ahmed Abdulaziz 0.260 0.192 0.341 5.280. 0.000 the Abdulaziz Ahmed Abdulaziz 0.260 0.192 0.341 5.280. 0.000 the Abdulaziz Ahmed Abdulaziz 0.260 0.192 0.341 5.280. 0.000 the Abdulaziz Ahmed Abdulaziz 0.260 0.192 0.241 16.133. 0.000 the Abdulaziz Ahmed Abdulaziz 0.260 0.194 0.104 16.133. 0.000 the Abdulaziz Ahmed Abdulaziz 0.260 0.192 0.241 14.275. 0.000 the Abdulaziz Ahmed Abdulaziz 0.260 0.194 0.141 14.275. 0.000 the Abdulaziz Ahmed Abdulaziz 0.260 0.194 0.141 14.275. 0.000 the Abdulaziz Ahmed Abdulaziz 0.260 0.194 0.141 14.275. 0.000 the Abdulaziz Ahmed Abdulaziz 0.060 0.114 14.275. 0.000 the Abdulaziz Ahmed Abdulaziz 0.251 0.9712. 0.000 the Abdulaziz Ahmed Abdulaziz 0.251 0.9712. 0.000 the Abdulaziz Ahmed Abdulaziz 0.255 0.436 4.968. 0.000 the Abdulaziz Ahmed Abdulaziz 0.258 0.216 0.304 9.0144 0.000 the Abdulaziz Abdulaziz 0.258 0.216 0.304 9.0144 0.000 the Abdulazi Abdulaziz 0.258 0.216 0.304 9.0144 0.000 the Abdulazi Abdulaziz 0.258 0.216 0.304 9.0144 0.000 the Abdulazi Abdulazi 0.158 0.175 51.345 0.000 the Abdula 0.159 0.120 0.168 6.179 6.000 the Abdula 0.159 0.120 0.268 0.238 0.000 the Abdula 0.159 0.127 0.206 0.298 0.200 the Abdula 0.159 0.177 0.178 9.3785 0.000 the Abdula 0.159 0.177 0.214 0.228 0.000 the Abdula 0.158 0.177 0.174 9.333 0.000 Abdong 0.259 0.599 0.549 0.589 0.500 be Abdula 0.159 0.120 0.226 0.200 0.000 Abdong 0.259 0.599 0.549 0.589 0.500 be Abdula 0.158 0.179 0.2042 0.000 Abdong 0.259 0.599 0.549 0.589 0.500 Abdong 0.599 0.549 0.549 0.539 0.000 Abdong 0.59 0.500 0.500 0.500 0.500 0.500 0.500 0	Gul Pinar	0.040	0.032	0.050	26.381-	0.000			1	1
nvin Cheraghi 0.080 0.080 0.091 27.9466 0.000 His Kadam 0.164 0.132 0.222 12.377 0.000 ledam Kaushal 0.069 0.050 0.094 15.094 0.000 Modagan 0.247 0.218 0.279 13.381 0.000 Modagan 0.247 0.218 0.279 13.381 0.000 mg Eun Yoo 0.050 0.455 0.056 50.133 0.000 hear Ahmed Mohammed 0.079 0.060 0.192 0.314 5.260 0.000 hear Ahmed Mohammed 0.079 0.060 0.194 16.133 0.000 hear Ahmed Mohammed 0.079 0.060 0.104 0.000 hear Ahmed Mohammed 0.079 0.060 0.104 0.000 hear Ahmed Mohammed 0.079 0.060 0.104 0.000 hear Ahmed Mohammed 0.079 0.060 0.198 0.3174 0.000 hang Zang 0.174 0.171 0.178 119.961 0.000 hand Xagynali Muzzaevich 0.190 0.190 0.3374 0.000 hand Xagynali Muzzaevich 0.190 0.190 0.374 0.000 hard Xagynali Muzzaevich 0.190 0.190 0.374 0.000 hard Sagynali Muzzaevich 0.190 0.190 0.374 0.000 hard Sagynali Muzzaevich 0.191 0.190 0.225 0.200 hard Sagynali Muzzaevich 0.191 0.190 0.228 0.231 0.000 hard Sagynali Muzzaevich 0.191 0.190 0.228 0.230 0.000 hard Sagynali Muzzaevich 0.191 0.195 0.227 13.053 0.000 hard Sagynali Muzzaevich 0.191 0.190 0.228 0.292 0.000 hard Sagynali Muzzaevich 0.191 0.190 0.258 0.290 0.000 hard Sagynali Muzzaevich 0.191 0.197 0.198 4.228.2. 0.000 hard Sagynali Muzzaevich 0.191 0.190 0.228 0.292 0.000 hard Sagynali Muzzaevich 0.191 0.190 0.292 0.292 0.000 hard Sagynali Muzzaevich 0.191 0.197 0.198 4.228.2. 0.000 hard Sagynali Muzzaevich 0.191 0.197 0.298 0.298 0.000 hard Sagynali Muzzaevich 0.191 0.197 0.298 0.298 0.000 hard Sagynali Muzzaevich 0.191 0.19	Limin Tian Muhammad Farhan Abbas									1
elam Kaushal 0.069 0.050 0.094 15.094 0.000 Modagan 0.247 0.218 0.279 13.361 0.000 Modagan 0.247 0.218 0.279 13.361 0.000 dulaziz Ahmed Abdulaziz 0.200 0.056 5.0133 0.000 dulaziz Ahmed Abdulaziz 0.200 0.192 0.441 5.260 0.000 dulaziz Ahmed Abdulaziz 0.200 0.192 0.441 5.260 0.000 dulazis Ahmed Abdulaziz 0.200 0.192 0.441 5.260 0.000 dulazis Ahmed Abdulaziz 0.200 0.192 0.441 3.3422 0.000 dranabhan. K 0.155 0.120 0.201 10.004 0.000 dranabhan. K 0.155 0.120 0.201 11.0144 3.425 0.000 dranabhan. K 0.155 0.119 0.499 0.540 1.879 0.060 eng Jin Kim 0.529 0.196 0.313 6.861 0.000 eng Jin Kim 0.250 0.166 0.313 6.861 0.000 eng Jin Kim 0.250 0.166 0.179 21.487 0.000 an Zhang 0.377 0.308 0.367 10.108 0.000 ric Lespesailles 0.097 0.066 0.191 33.749 0.000 ric Lespesailles 0.097 0.160 0.120 0.168 13.262 0.000 ric Lespesailles 0.097 0.268 0.138 1.819 0.000 ric Lespesailles 0.097 0.268 0.138 1.2868 0.000 ric Lespesailles 0.097 0.288 0.338 1.2868 0.000 ric Lespesailles 0.097 0.280 0.152 1.9.712 0.000 ric Lespesailles 0.097 0.280 0.282 13.035 0.000 ric Lespesailles 0.097 0.280 0.288 0.338 1.2868 0.000 ric Ahborg 0.150 0.120 0.116 13.226 0.000 ric Abborg 0.150 0.120 0.116 0.128 0.109 ric Abborg 0.150 0.029 0.168 13.262 0.000 ric Abborg 0.161 0.128 0.179 5.1.45- 0.000 ric Abborg 0.150 0.020 0.168 13.262 0.000 ric Abborg 0.161 0.128 0.179 5.1.45- 0.000 ric Abborg 0.161 0.188 0.175 5.1.45- 0.000 ric Abborg 0.161 0.128 0.179 5.1.45- 0.000 ric Abborg 0.161 0.178 0.128 0.000 ric Abbord 0.179 0.282 0.283 0.000 ric Abbord 0.179 0.282 0.283 0.000 ric Abbord 0.18 0.171 0.214 0.202 0.000 Johong 0.569 0.569 0.569 0.569 0.569 0.509 0.000 Dima E Noel 0.015 0.027 11.9.333 0.000 Dolong 0.569 0.569 0.569 0.569 0.509 0.000 Dima E Noel 0.015 0.131 0.131 0.211 7.200 0.000 Dolong 0.569 0.569 0.569 0.569 0.569 0.500 0.000 Dolong 0.569 0.513 0.133 0.131 0.201 7.200 0.000 Dolong 0.569 0.549 0.589 0.589 0.500 0.000 Dolong 0.569 0.549 0.589 0.589 0.500 0.000 Dolong 0.560 0.513 0.133 0.000 Dolong 0.560 0.513 0.133 0.00	Parvin Cheraghi	0.080	0.068	0.093	27.946-	0.000				
Withua Ko 0.097 0.088 0.107 40.349- 0.000 Modagan 0.247 0.218 0.229 13.361 0.000 ng Eun Yoo 0.060 0.045 0.056 50.133 0.000 dulazz Ahmed Abdulaziz 0.280 0.341 5.260- 0.000 heer Ahmed Mohammed 0.079 0.080 0.141 16.133- 0.000 sanga Rathnayake 0.389 0.310 0.443 3.426- 0.001 aanthana Subramaniam 0.153 0.119 0.133 1.810- 0.000 aanthana Subramaniam 0.153 0.1170 21.487- 0.000 0.001 yran Zang 0.377 0.386 0.456 0.000 0.001 0.120 0.120 0.251 9.712- 0.000 yran Zang 0.375 0.355 0.355 0.354 4.968 0.000 0.001 0.000 yran Zang 0.375 0.355 0.355 0.355 0.000 0.011 0.120 1.811 0.222- 0.000 yran Zang 0.337 0.286	Nidhi S. Kadam Neelam Kaushal									1
yer Seyfizadeh 0.310 0.282 0.340 11.638- 0.000 dulaziz Ahmed Abdulaziz 0.260 0.192 0.341 5.260- 0.000 dulaziz Ahmed Abdulaziz 0.260 0.192 0.341 5.260- 0.000 heer Ahmed Mohammed 0.079 0.060 0.104 16.133 0.000 hear Ahmed Mohammed 0.079 0.060 0.0443 3.426- 0.001 aanthana Subramaniam 0.153 0.119 0.133 11.810- 0.000 ang Zeng 0.174 0.171 0.178 119.961- 0.000 ang Zeng 0.174 0.171 0.178 119.961- 0.000 man Zhang 0.359 0.350 0.436 4.966 0.000 rent Richy 0.203 0.162 0.251 9.712- 0.000 rent Richy 0.203 0.162 0.251 9.712- 0.000 mir Gassenga RAbherge 0.175 51.345 - 0.000 mir Gassenga Rome 0.191 0.109 0.137 0.176 1.2187- 0.000 mir Claspessilles 0.097 0.086 0.094 9.0144 0.000 mir Claspessilles 0.097 0.086 0.094 9.0144 0.000 mir Claspessilles 0.097 0.086 0.155 51.345 - 0.000 mir Claspessilles 0.097 0.086 0.155 51.345 - 0.000 mir Claspessilles 0.097 0.086 0.197 51.345 - 0.000 mir Claspessilles 0.097 0.086 0.197 51.345 - 0.000 mir Claspessilles 0.097 0.086 0.094 9.0144 0.000 mir Claspessilles 0.097 0.086 0.095 17.996 0.000 hur Swislocki 0.181 0.226 0.228 0.338 12.868 0.000 thur Swislocki 0.181 0.231 0.405 3.785 0.000 thur Swislocki 0.111 0.005 0.024 11.012- 0.000 thur Swislocki 0.181 0.217 0.121 9.333 0.000 O Along 0.297 0.296 0.298 0.355 17.996 0.000 Dima E Neel 0.116 0.058 0.059 0.559 0.500 0.000 Dima E Neel 0.116 0.058 0.137 20.0429 0.000 Dima Stati 0.244 0.213 0.317 20.0429 0.000 Dima Stati 0.244 0.244 0.213 0.317 20.0429 0.000 Dima Stati 0.244 0.213 0.317 20.0429 0.000 Dima Stati 0.244 0.213 0.317 20.0429 0.000 Dima Stati 0.24	Chi?Hua Ko	0.097	0.088	0.107	40.349-	0.000			<u> </u>	
ing Euri Yoo 0.050 0.045 0.056 0.0133 0.000 divaizi Ahmed Advilaziz heer Ahmed Mahammed 0.079 0.060 0.120 0.208 10.004 0.000 dimanabhan. K 0.159 0.120 0.208 10.004 0.000 dimanabhan. K 0.159 0.120 0.208 10.004 0.000 dimanabhan. K 0.159 0.120 0.208 10.004 0.000 anathana Subarananiam 0.153 0.119 0.133 11.810 0.000 eng Jin Kim 0.250 0.196 0.313 6.861 0.000 eng Jin Kim 0.250 0.196 0.313 0.861 0.000 eng Jin Kim 0.250 0.196 0.313 0.861 0.000 eng Jin Kim 0.250 0.196 0.313 0.868 0.000 mator Sagynail Murzaevich 0.149 0.130 0.170 21.487 0.000 eng Jin Kim 0.250 0.196 0.338 12.868 0.000 mator Sagynail Murzaevich 0.149 0.130 0.170 21.487 0.000 eng Jin Kim 0.250 0.196 0.338 12.868 0.000 mator Sagynail Murzaevich 0.149 0.130 0.170 21.487 0.000 eng Jin Kim 0.250 0.162 0.251 9.712 0.000 intic A Ahlborg 0.155 0.120 0.186 13.262 0.000 mator Sagynail Murzaevich 0.149 0.130 0.175 21.485 0.000 J. Majanovic 0.258 0.216 0.304 9.014 0.000 J. Majanovic 0.258 0.216 0.304 9.014 0.000 J. Majanovic 0.258 0.216 0.304 9.014 0.000 Hire Therese Puth 0.085 0.080 0.091 68.419 0.000 Cheng 0.297 0.296 0.298 375.388 0.000 this CANLE FAISAL-CURY1 0.320 0.227 13.053 0.000 Cheng 0.297 0.296 0.298 0.753 0.000 this Source do 191 0.160 0.227 13.053 0.000 this Source do 191 0.160 0.227 13.053 0.000 Cheng 0.297 0.296 0.298 0.753 0.000 this Source do 191 0.160 0.227 13.053 0.000 Cheng 0.297 0.296 0.298 0.753 0.000 this Source do 191 0.160 0.227 13.053 0.000 Cheng 0.297 0.296 0.298 0.733 0.000 Dima E Neel 2.007 0.151 0.131 0.211 0.233 0.000 Dima E Neel 2.007 0.151 0.131 0.211 0.233 0.000 Dima Stati 0.264 0.213 0.317 20.0424 0.000 His Shautalen 0.187 0.177 0.198 42.255 0.000 Dima Stati 0.264 0.213 0.317 20.042 0.000 Dima Stati 0	P. Modagan Nayer Seyfizadeh									
heer Ahmed Mohammed 0.079 0.060 0.104 16.133 0.000 dmanabaha. K 0.159 0.120 0.208 10.004 0.000 sanga Rathnayake 0.369 0.301 0.443 3.426 0.001 izhi Wang 0.519 0.499 0.540 1.11 14.275 0.000 orig Jhreshan 30bramaniam 0.153 0.119 0.119 11.181-0 0.000 eong Jin Kim 0.250 0.196 0.313 6.861 0.000 anzhang 2.eng 0.174 0.171 0.178 119.961 0.000 anzhang 2.eng 0.174 0.171 0.178 119.961 0.000 anzhang 2.eng 0.174 0.171 0.178 119.961 0.000 anzhang 0.251 0.102 0.1487 0.000 nink G Ahlborg 0.150 0.120 0.186 13.262 0.000 ric Lespessailles 0.097 0.086 0.199 33.749 0.000 ric Lespessailles 0.097 0.086 0.198 33.749 0.000 riz Caspessailles 0.037 0.086 0.198 33.749 0.000 riz Caspessailles 0.037 0.126 13.262 0.000 riz Caspessailles 0.037 0.286 0.216 0.338 12.868 0.000 riz Caspessailles 0.037 0.226 0.338 12.868 0.000 riz Caspessailles 0.037 0.226 0.221 39.712 0.000 riz Caspessailles 0.037 0.226 0.221 39.712 0.000 riz Caspessailles 0.037 0.226 0.223 3.753 8.4 0.000 riz Caspessailles 0.037 0.226 0.227 30.53 0.000 riz Caspessailles 0.037 0.296 0.227 30.53 0.000 riz Caspessailles 0.087 0.128 0.227 30.53 0.000 riz Caspessailles 0.087 0.128 0.227 30.53 0.000 riz Caspessailles 0.087 0.128 0.227 30.53 0.000 riz Caspessailles 0.037 0.296 0.373 8.7584 0.000 riz Caspessailles 0.037 0.296 0.373 8.7584 0.000 riz Caspessailles 0.117 0.211 9.333 0.000 riz Cheng 0.237 0.296 0.582 7.7 0.000 chert Ferrai rid cos Mutalen 0.187 0.177 0.121 9.333 0.000 o Jonge 0.569 0.549 0.589 6.733 0.000 o Jonge 0.569 0.549 0.589 6.733 0.000 o Jas 0.127 0.296 0.000 o Jas 0.137 20.042 0.000 o Jas 0.128 0.213 0.321 7.208- 0.000 o Jas 0.137 20.042 0.000 o Jas 0.128 0.213 0.321 7.208- 0.000 o Jas 0.128 0.227 0.296 0.000 o Jas 0.138 0.137 20.0420 0.000 o Jas 0.132 0.207 19.498- 0.000 o Jas 0.162 0.207 19.498- 0.000	Jung Eun Yoo	0.050	0.045	0.056	50.133-	0.000			<u> </u>	
sanga Rathnayake 0.369 0.301 0.443 3.426 0.001 ring Shresha 0.020 0.060 0.111 14.275 0.000 aanthana Subramaniam 0.153 0.119 0.133 11.810- 0.000 ang Zeng 0.174 0.171 0.178 119.961- 0.000 ang Zeng 0.174 0.170 21.487- 0.000 ric Lespessailles 0.097 0.086 0.109 33.749- 0.000 ric Lespessailles 0.097 0.086 0.109 33.749- 0.000 ric Lespessailles 0.037 0.186 13.262 0.000 ric Lespessailles 0.037 0.126 0.126 13.262 0.000 ric Zengessailles 0.037 0.126 0.226 0.338 12.868- 0.000 ric Zengessailles 0.037 0.206 0.198 33.749- 0.000 ric Zengessailles 0.037 0.206 0.198 33.749- 0.000 ric Zengessailles 0.037 0.206 0.198 33.749- 0.000 ric Zengessailles 0.037 0.226 0.238 375.388- 0.000 ric Zenge Zend Zend Zend Zend Zend Zend Zend Zen	Zaheer Ahmed Mohammed							∎_		1
rirgi Shreshta andrhana Subramaniam 0.153 0.119 0.193 11.810 0.000 eong Jin Kim 0.250 0.19 0.499 0.540 1.879 0.060 1.879 0.060 0.174 0.174 0.171 0.178 119.961 0.000 eong Jin Kim 0.250 0.196 0.313 6.861 0.000 0.868 0.000 0.868 0.000 0.833 0.456 0.458 0.000 0.868 0.000 0.868 0.000 0.87 0.2487 0.000 0.162 0.251 9.712 0.000 0.162 0.251 9.712 0.000 0.162 0.25 9.712 0.000 0.16 0.25 0.25 0.26 0.00 0 0.16 0.25 0.25 0.26 0.00 0 0.17 0.16 0.25 0.25 0.26 0.00 0 0.16 0.25 0.25 0.26 0.00 0 0.17 0.15 0.22 0.26 0.33 12.888 0.000 1.7 0.25 0.25 0.26 0.33 12.888 0.000 0.7 7 0.45 0.05 0.55 0.55 0.05 0.05 0.55 0.55	Padmanabhan. K									
izhi Wang 0.519 0.499 0.540 1.879 0.060 eng Zeng 0.174 0.171 0.178 119.961 0.000 eng Jin Kim 0.250 0.196 0.313 6.861 0.000 matox Sagynai Murzaevich 0.149 0.130 0.170 2.1487 0.000 matox Sagynai Murzaevich 0.149 0.130 0.170 2.1487 0.000 prent Richy 0.233 0.162 0.251 9.712 0.000 mrik G Ahlborg 0.150 0.120 0.186 13.262 0.000 J. Majanovic 0.258 0.216 0.304 9.014 0.000 J. Majanovic 0.258 0.216 0.304 9.014 0.000 redana Cavalii 0.166 0.158 0.175 51.345 0.000 redana Cavalii 0.166 0.158 0.175 51.345 0.000 redana Cavalii 0.166 0.158 0.175 51.345 0.000 Reason 0.191 0.160 0.227 13.053 0.000 EXANDRE FAISAL-CURY1 0.320 0.292 0.350 11.095 0.000 Cheng 0.297 0.296 0.288 375.388 0.000 thir Swalocki 0.311 0.231 0.405 3.7858 0.000 there Therrari 0.0117 0.128 42.253 0.000 there Therrari 0.0118 0.177 0.128 42.253 0.000 borna E Noel ardo M. Lima 0.187 0.177 0.198 42.253 0.000 borna E Noel ardo M. Lima 0.186 0.117 0.121 9.333 0.000 ∂ Alonge 0.569 0.549 0.589 6.733 0.000 ∂ Alonge 0.569 0.549 0.589 0.589 0.573 0.000 ∂ Alonge 0.569 0.549 0.589 0.589 0.573 0.000 ∂ Alonge 0.560 0.549 0.589 0.589 0.573 0.000 ∂ Alonge 0.560 0.549 0.589 0.589 0.573 0.000 ∂ Alonge 0.560 0.549 0.589 0.589 0.573 0.000 ∂ Along 0.560 0.549 0.589 0.589 0.573 0.000 0.580 0.580 0.590	Shriraj Shrestha	0.082	0.060	0.111	14.275-	0.000		∎_		1
ang Zený erong Jin Kim 0.250 0.196 0.313 6.881 0.000 mattov Sagynali Murzaevich 0.149 0.130 0.170 2.1.487 0.000 an Zhang 0.395 0.355 0.436 4.968 0.000 fric Lespessailles 0.097 0.086 0.109 33.749 0.000 tricia D'Amelio 0.337 0.308 0.367 10.108 0.000 tricia D'Amelio 0.337 0.308 0.367 11.095 0.000 tricia D'Amelio 0.018 0.080 0.091 68.419 0.000 EXANDRE FAISAL-CURY1 0.320 0.292 0.350 11.095 0.000 ther Swisokchi 0.311 0.231 0.405 3.785 0.000 thur Swisokchi 0.311 0.231 0.405 3.785 0.000 thur Swisokchi 0.311 0.231 0.405 1.378 4.2253 0.000 thur B'Ausicoki 0.311 0.231 0.405 1.378 4.2253 0.000 thur B'Ausicoki 0.313 0.012 0.292 0.298 0.000 D'Alonge 0.569 0.549 0.589 6.733 0.000 D'Alonge 0.560 0.549 0.599 0.590 0.500 D'Alonge 0.56	Shaanthana Subramaniam Peizhi Wang									
amatov Sagynali Murzaevich 0.149 0.130 0.170 21.487 0.000 an Zhang 0.395 0.355 0.436 4.968 0.000 prent Richy 0.203 0.162 0.251 9.712 0.000 ric Lespessailles 0.097 0.086 0.109 33.749 0.000 trizia D'Amelio 0.337 0.308 0.367 10.108 0.000 n° 7a-Jes us G Omez-de-Tejada Romero 0.312 0.286 0.338 12.868 0.000 n° 7a-Jes us G Omez-de-Tejada Romero 0.312 0.286 0.338 12.868 0.000 n° 7a-Jes us G Omez-de-Tejada Romero 0.312 0.286 0.338 12.868 0.000 n° 7a-Jes us G Omez-de-Tejada Romero 0.312 0.286 0.338 12.868 0.000 n° 7a-Jes us G Omez-de-Tejada Romero 0.312 0.286 0.338 12.868 0.000 n° 7a-Jes us G Omez-de-Tejada Romero 0.312 0.286 0.338 12.868 0.000 n° 7a-Jes us G Omez-de-Tejada Romero 0.312 0.286 0.338 12.868 0.000 nier-Therese Puth 0.085 0.080 0.091 68.419 0.000 EXANDRE FAISAL-CURY1 0.320 0.292 0.350 11.095 0.000 Cheng 0.297 0.296 0.298 375.388 0.000 Cheng 0.297 0.296 0.298 375.388 0.000 thur Swislocki 0.311 0.231 0.405 3.785 0.000 bert Ferrari 0.011 0.005 0.024 11.012 0.000 thur Swislocki 0.318 0.117 0.121 9.333 0.000 Dolog 0.569 0.549 0.589 6.733 0.000 Dina E Neel 0.105 0.087 0.128 9.2263 0.000 Dina B Neel 0.313 0.321 7.2004 0.000 Dolog 0.569 0.549 0.589 6.733 0.000 Dolog 0.569 0.549 0.589 6.733 0.000 Dolog 0.569 0.549 0.589 0.733 0.000 Dolog 0.569 0.569 0.549 0.589 0.733 0.000 Dolog 0.569 0.569 0.549 0.589 0.733 0.000 Dolog 0.560 0.569 0.549 0.589 0.733 0.000 Dolog 0.133 0.162 0.207 19.498- 0.000 Dolog 0.133 0.162 0.207 19.498- 0.000	Qiang Zeng	0.174	0.171	0.178	119.961-	0.000			1 1	1
an Zhang 0.385 0.355 0.436 4.968- 0.000 pront Richy 0.203 0.162 0.251 9.712 0.000 nrik G Ahlborg 0.150 0.120 0.186 13.262 0.000 nrik G Ahlborg 0.150 0.120 0.186 13.262 0.000 J. Majanovic 0.255 0.216 0.304 9.014 0.000 J. Majanovic 0.255 0.216 0.304 9.014 0.000 J. Majanovic 0.255 0.216 0.304 9.014 0.000 réal-as us G'omez-de-Tejada Romer 0.317 0.208 0.381 12.868 0.000 réal-as Cavalli 0.166 0.158 0.175 51.345 0.000 réal-as Cavalli 0.025 0.050 0.066 58.227 0.000 R. Nielsen 0.191 0.160 0.227 13.053 0.000 R. Nielsen 0.191 0.160 0.227 13.053 0.000 R. Nielsen 0.191 0.160 0.227 13.053 0.000 Det Petrari Mur Swilocki 0.311 0.231 0.405 3.788- 0.000 hur Swilocki 0.311 0.231 0.405 3.785- 0.000 bient Ferrari 0.011 0.005 0.066 158.227 0.000 Dima E Noel 0.168 0.177 0.188 42.253 0.000 bient Ferrari 0.014 0.005 0.024 11.012 0.000 J. Majange 0.569 0.549 0.589 6.733 0.000 J. Majange 0.569 0.549 0.589 6.733 0.000 J. Alonge 0.569 0.549 0.589 6.733 0.000 J. Alonge 0.569 0.549 0.589 0.733 0.000 J. Baschitsch 0.113 0.131 20.31 7.200.42 0.000 J. Majange 0.569 0.549 0.589 0.733 0.000 J. Baschitsch 0.133 0.162 0.207 19.498- 0.000 J. Baschitsch 0.133 0.162 0.207 19.498- 0.000	Kyeong Jin Kim Mamatov Sagynali Murzaevich								▰ _ !	1
ric Lespesailles 0.097 0.086 0.109 33.749 0.000 rink G Ahlborg 0.150 0.120 0.188 13.262 0.000 J. Marjanovic 0.337 0.308 0.367 10.108 0.000 J. Marjanovic 0.255 0.216 0.304 9.014 0.000 rida Govalii 0.055 0.050 0.338 12.868 0.000 redana Cavalii 0.016 0.158 0.175 51.345 0.000 redana Cavalii 0.016 0.158 0.175 51.345 0.000 R. Nielsen 0.191 0.160 0.227 13.053 0.000 R. Nielsen 0.191 0.160 0.227 13.053 0.000 EXANDRE FAISAL-CURY1 0.320 0.292 0.350 11.095 0.000 Cheng 0.297 0.296 0.298 375.388 0.000 hn Londono 0.044 0.335 0.065 17.996 0.000 hn Londono 0.044 0.335 0.065 17.996 0.000 hn Londono 0.044 0.314 0.417 4.558 0.000 ridos Mataleien 0.187 0.177 0.198 42.253 0.000 cardo M. Lima 0.158 0.117 0.211 9.333 0.000 ja Zezonu 0.364 0.314 0.417 4.568 0.000 na Sitati 0.264 0.213 0.321 7.209 0.000 ja Zezonu 0.364 0.314 0.417 4.568 0.000 0.183 0.162 0.207 19.498 0.000 0.183 0.162 0.207 19.498 0.000	Qian Zhang	0.395	0.355	0.436	4.968-	0.000			∎I IIII	1
nnk & Ahlborg 0.150 0.120 0.186 13.262- 0.000 ir ?a-bas'us G'omez-de-Tejada Romero 0.312 0.286 0.304 9.014- 0.000 ur ?a-bas'us G'omez-de-Tejada Romero 0.312 0.286 0.338 12.888 0.000 prie-Therese Puth 0.085 0.080 0.091 68.419- 0.000 EXANDRE FAISAL-CURY1 0.320 0.292 0.350 11.095- 0.000 EXANDRE FAISAL-CURY1 0.320 0.292 0.350 11.095- 0.000 Cheng 0.297 0.296 0.298 375.388- 0.000 Cheng 0.297 0.296 0.298 375.388- 0.000 chen g 0.297 0.296 0.298 375.388- 0.000 bert Ferrari 0.011 0.305 0.065 58.227 0.000 bert Ferrari 0.011 0.305 0.065 38.227 0.000 bert Ferrari 0.011 0.005 0.054 11.012- 0.000 bert Ferrari 0.011 0.005 0.054 11.012- 0.000 bert Ferrari 0.011 0.005 0.054 11.012- 0.000 bert Ferrari 0.011 0.015 0.067 0.128 20.280- 0.000 bert Ferrari 0.011 0.015 0.058 0.133 0.000 bert Ferrari 0.011 0.015 0.133 0.121 9.333 0.000 Diras Matalen 0.185 0.117 0.118 42.253- 0.000 bert Serrari 0.011 0.015 0.137 20.0424 10.000 Alonge 0.569 0.549 0.589 6.733 0.000 Diras Matalen 0.185 0.137 0.313 20.042 0.000 0.183 0.162 0.207 19.498- 0.000 0.183 0.162 0.207 19.498- 0.000 0.183 0.162 0.207 19.498- 0.000	Florent Richy E' ric Lespessailles			0.109	33.749-	0.000				1
J. Marginovic 0.258 0.216 0.304 9.014 0.000 rr 2a.Jes US Gomez-de-Tejada Romero 0.168 0.158 0.175 51.345 0.000 redana Cavalli 0.086 0.081 0.8419 0.000 EXANDRE FAISAL-CURY1 0.320 0.292 0.350 11.095 0.000 Cheng 0.297 0.296 0.298 375.388 0.000 Cheng 0.297 0.296 0.298 375.388 0.000 thir Switocki 0.311 0.231 0.405 3.7858 0.000 biot Farrari 0.0187 0.177 0.198 42.253 0.000 biot Farrari 0.0187 0.177 0.188 42.253 0.000 biot Farrari 0.0187 0.177 0.188 42.253 0.000 biot Farrari 0.0187 0.177 0.188 42.253 0.000 biot Farrari 0.0183 0.117 0.059 0.059 0.589 0.673 0.000 biot Farrari 0.0183 0.137 20.0042 0.000 0.183 0.162 0.207 19.498- 0.000 0.183 0.162 0.207 19.498- 0.000	Henrik G Ahlborg	0.150	0.120	0.186	13.262-	0.000				1
n' ra-Jes' us G'omez-de-Tejada Romero 0.312 0.286 0.338 12.868 0.000 reidana Cavalli 0.166 0.158 0.175 5.1345 0.000 pried-Therese Puth 0.085 0.080 0.091 68.419 0.000 EXANDRE FAISAL-CURY1 0.320 0.292 0.350 11.095 0.000 EXANDRE FAISAL-CURY1 0.320 0.292 0.350 11.095 0.000 Dear Borling 0.237 0.296 0.288 375.388 0.000 Dhur Swislocki 0.311 0.231 0.405 3.785 0.000 bert Ferrari 0.011 0.005 0.024 11.012 0.000 bert Serrari 0.011 0.005 0.024 0.121 9.333 0.000 Dima Stati 0.264 0.313 0.211 9.333 0.000 0.280 0.589 0.549 0.589 6.733 0.000 0.183 0.162 0.207 19.498 0.000 0.183 0.162 0.207 19.498 0.000 0.183 0.162 0.207 19.498 0.000	E. J. Marjanovic	0.258	0.216	0.304	9.014-	0.000				1
nie-Therse Puth 0.085 0.080 0.091 68.419 0.000 R. Nelsen 0.191 0.160 0.227 13.053 0.000 EXANDRE FAISAL-CURY1 0.320 0.292 0.350 11.095 0.000 Cheng 0.297 0.296 0.298 375.388 0.000 Dur Swislocki 0.311 0.231 0.405 3.785 0.000 bert Ferrari 0.011 0.005 0.024 11.012 0.000 bert Ferrari 0.011 0.005 0.024 11.012 0.000 bert Rerari 0.018 0.177 0.128 9.2233 0.000 bert Serari 0.013 0.017 0.128 9.2233 0.000 bert Serari 0.013 0.017 0.128 9.2233 0.000 bert Serari 0.013 0.137 0.0000 0.180 0.113 0.137 20.0424 0.000 0.183 0.162 0.207 19.498 0.000 0.183 0.162 0.207 19.498 0.000 0.183 0.162 0.207 19.498 0.000	Mar'?a-Jes'us G'omez-de-Tejada Romero	0.312	0.286	0.338	12.868-				∣T∎ ∣	1
EXANDRE FAISAL-CURY1 0.320 0.292 0.350 11.095- 0.000 is Robitalile 0.055 0.050 0.060 58.227 0.000 Cheng 0.297 0.296 0.298 375.388- 0.000 Thur Swilocki 0.311 0.231 0.405 3.785- 0.000 hur Swilocki 0.311 0.231 0.405 3.785- 0.000 bert Ferrai 0.011 0.005 0.024 11.012- 0.000 bert Ferrai 0.017 0.086 17.996- 0.000 brina B Noel 0.150 0.087 0.128 20.280- 0.000 Jonge 0.569 0.549 0.589 6.733 0.000 Jolonge 0.569 0.549 0.331 20.000 0.000 Jolonge 0.569 0.549 0.317 20.042 0.000 0.000 Jolonge 0.569 0.519 0.317 20.042 0.000 0.000 0.000 P. Boschitsch 0.133 0.137 20.042 0.000 0.000 0.05 <t< td=""><td>Marie-Therese Puth</td><td>0.085</td><td>0.080</td><td>0.091</td><td>68.419-</td><td>0.000</td><td></td><td></td><td></td><td>1</td></t<>	Marie-Therese Puth	0.085	0.080	0.091	68.419-	0.000				1
lie Robitalile 0.055 0.060 0.060 58.227 0.000 Cheng 0.297 0.296 0.298 375.388 0.000 hur Swislocki 0.311 0.231 0.405 3.785 0.000 hur Swislocki 0.177 0.198 42.253 0.000 Alonge 0.569 0.549 0.589 6.733 0.000 Alonge 0.569 0.549 0.589 6.733 0.000 Dezonu 0.364 0.314 0.417 4.858 0.000 Alonge 0.569 0.549 0.321 7.209 0.000 Dezonu 0.364 0.314 0.417 4.858 0.000 Alonge 0.185 0.133 0.321 7.209 0.000 0.183 0.162 0.207 19.498 0.000 0.183 0.162 0.207 19.498 0.000	B.R. Nielsen								∎∣ _∎ ∣	1
thur Swisokki 0.311 0.231 0.405 3.785- 0.000 hn Londono 0.048 0.035 0.065 17.998- 0.000 bert Ferrari 0.011 0.005 0.024 11.012- 0.000 irlos Mautalen 0.187 0.177 0.198 42.253- 0.000 brina E Noel 0.165 0.087 0.226 0.000 cardo M. Lima 0.158 0.117 0.211 9.333- 0.000 D Ezeonu 0.364 0.314 0.417 4.858- 0.000 D Ezeonu 0.364 0.314 0.417 7.209- 0.000 D Eschitsch 0.183 0.162 0.207 19.498- 0.000	Julie Robitaille	0.055	0.050	0.060	58.227-	0.000				1
hn Londono bert Ferrari Hosel Ferrari Hosel Ferrari Hosel Ferrari Hosel Ferrari Diffa Del Fold Hosel Ferrari Hosel Diffa	H. Cheng Arthur Swislocki									1
ridos Matulalen 0.187 0.177 0.198 42.253 0.000 brina E Noel 0.165 0.087 0.172 0.128 20.260 0.000 cardo M. Lima 0.159 0.117 0.211 9.333 0.000 A Alonge 0.569 0.549 0.589 6.733 0.000 b Zezonu 0.364 0.314 0.417 4.5858 0.000 d Chuma Sitati 0.264 0.213 0.321 7.209 0.000 0.183 0.162 0.207 19.498 0.000 0.183 0.162 0.207 19.498 0.000	John Londono	0.048	0.035	0.065	17.996-	0.000				1
brina E Noel 0.105 0.087 0.128 20.280- 0.000 cardo M. Lima 0.158 0.117 0.211 9.333- 0.000 D Ezeonu 0.364 0.314 0.417 4.858- 0.000 D Ezeonu 0.364 0.213 0.321 7.200- 0.000 P. Boschitsch 0.135 0.133 0.137 200.042- 0.000 D.183 0.162 0.207 19.498- 0.000 D.183 0.162 0.207 19.498- 0.000	Robert Ferrari Carlos Mautalen							₽		1
Delange 0.569 0.549 0.589 6.733 0.000 D Ezeonu 0.364 0.314 0.417 4.858 0.000 D Ezeonu 0.364 0.213 0.321 7.209 0.000 P. Boschitsch 0.135 0.133 0.137 200.042 0.000 0.183 0.162 0.207 19.498 0.000 -0.50 -0.25 0.00 0.25 0.50	Sabrina E Noel	0.105	0.087	0.126	20.280-	0.000			•	1
D Ezeonu 0.364 0.314 0.417 4.858- 0.000 ed Chuma Sitati 0.264 0.213 0.321 7.209- 0.000 P. Boschitsch 0.133 0.162 0.207 19.498- 0.000 0.183 0.162 0.207 19.498- 0.000 -0.50 -0.25 0.00 0.25 0.50	Ricardo M. Lima TO Alonge								-	1
P. Boschitsch 0.135 0.133 0.137 200.042 0.000 0.183 0.162 0.207 19.498 0.000 -0.50 -0.25 0.00 0.25 0.50	PO Ezeonu	0.364	0.314	0.417	4.858-	0.000			1	1
0.183 0.162 0.207 19.498- 0.000	Fred Chuma Sitati E. P. Boschitsch								● -	1
	E Doachadh					0.000		=		ł
Favours A Favours B						-0.50	-0.25	0.00	0.25 0.3	50
							Favours A	F	avours B	

Fig. 3 Overall prevalence of osteoporosis in the world based on a random effects model

Subgroup	Number of articles	Sample size	l ²	Publication bias (Begg and Mazumdar test)	Prevalence % (95% CI)
Continents					
Asia	64	102,279,215	99.9	0.106	16.7 (95% Cl 15.9–17.5)
Europe	9	24,481	99.1	1.000	18.6 (95% CI 12.9–26)
America	9	928,492	99.6	0.916	12.4 (95% CI 7.4–19.5)
Africa	3	2989	98.2	0.296	39.5 (95% CI 22.3–59.7)
Australia	1	99,399	100	_	13.5 (95% CI 13.3–13.7)
Diagnosis tools					
BMD (DXA)	71	102,398,640	99.9	0.112	19 (95% CI 18–20)
BMD by (DEXA)	11	923,401	99.3	0.533	19.6 (95% CI 14.3-26.2)
SOS	3	4116	92.2	1.000	14.8 (95% CI 10.9–19.7)

Table 2 Results of meta-analysis by continents and diagnos
--

criteria were conducted in the eastern Mediterranean: the study was conducted between 2000 and 2017 without any language restrictions; the prevalence of osteoporosis was 24.4%; the prevalence of osteoporosis is 24.4% in women and 20.5% in men [96].

The present study examined the PubMed, Science Direct, Web of Science, Scopus, Magiran, and Google Scholar databases that were searched with no lower time limit and until 2020. According to PRISMA checklist and flow chart, while Zamani et al. [96] studied only PubMed, Scopus, Web of Science, and Index Medicus for the EMR published between January 2000 and December 2017, we can say that the sensitivity of this study by examining more databases and finding more relevant studies is more than the study of Zamani et al. [96]. In addition, this study has been studied worldwide and by gender in all continents, but the study of Zamani et al. [96] has examined only the Eastern Mediterranean.

The prevalence of osteoporosis in women of the world was reported to be 23.1 (95% CI 19.8–26.9), and

the prevalence of osteoporosis in men of the world was reported to be 11.7 (95% CI 9.6–14.1). The results of subgroup analysis also show that among men, the highest prevalence of osteoporosis was in Asia and among women, the highest prevalence of osteoporosis was in Africa, this is even though no studies have been conducted on men in the African continent and no African studies of men in the meta-analysis.

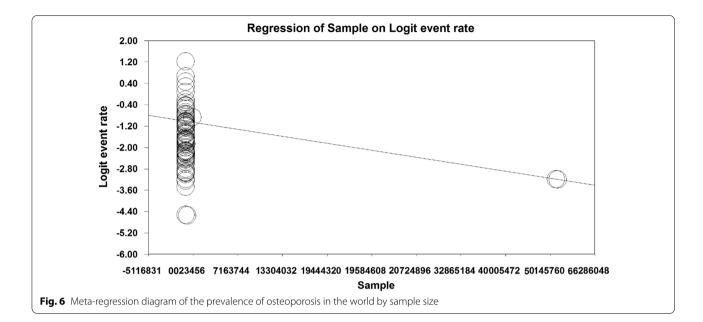
The highest prevalence of osteoporosis in the studies studied in Iran with 77.3% and the lowest prevalence in the Canadian study with 1.07% [30, 85]. Osteoporosis affects both males and females. Although the definition of osteoporosis is not necessarily associated with fractures, the unfortunate consequence is fractures [96–100]. The analysis showed that out of the diagnostic tools used to diagnose osteoporosis, the prevalence of osteoporosis was highest when diagnosed with BMD instruments.

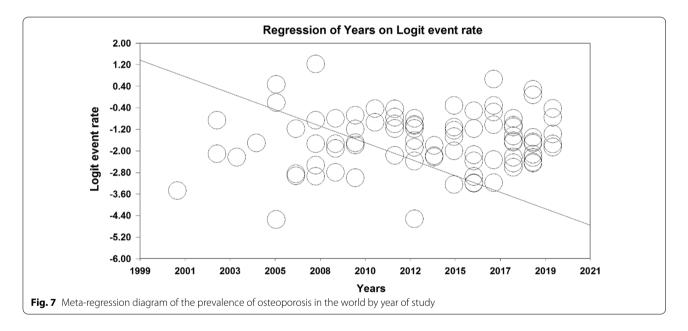
According to a study in 1995 in the USA, approximately 1.5 million fractures are associated with osteoporosis each year. It is estimated that 80% of India's urban

Continents (sex)	Number of articles	Sample size	l ²	Begg and Mazumdar test	Prevalence % (95% CI)
Asia					
Men	31	85,636	99.3	0.414	11.7 (95% CI 8.8–15.5)
Women	51	113,431	99.3	0.188	24.3 (95% Cl 21.2-27.8)
Europe					
Men	4	6695	98.1	0.308	9.7 (95% Cl 4.4-18.5)
Women	8	17,786	98.7	0.710	19.8 (95% CI 14.5-26.5)
America					
Men	4	360,669	96.09	0.734	8.5 (95% Cl 3.7-14.1)
Women	7	567,823	99.8	1.000	15.1 (95% Cl 6.9–29.9)
Africa					
Men	-	-	-	-	-
Women	3	2018	98.9	0.296	42.4 (95% Cl 19.9-56.5)

Table 3 Results of meta-analysis by continents stratified by sex

Meta Analysis Event rate and 95% CI Statistics for each study Study name Event Lower Upper rate limit limit 7-Value n-Value Hyun Koo Uoon 0.030 0.016 0.057 10.249-0.000 Sireen Shilbayeh 0.298 0.255 0.344 7.856-0.000 X-P WU 0.108 0.094 0.125 26.171-0.000 Vu Thi Thu Hien 0.154 0.139 0.169 29.068-0.000 0.448 0.424 0.472 4.188-0.616 0.569 0.661 4.778 Sarath LEKAMWASAM 0.000 G Chhibber 0.000 Nan-Ping Yang Abdulbari BENER 0.114 0.109 0.119 82.600-0 000 0.051 0.038 0.069 18.436-0.000 Didem Arslantas 0.185 0.160 0.212 16.954-0.000 S. Miura 0.198 0.159 0.243 10.273-0.000 P Shokrollahi 0.773 0.665 0.854 4.450 0.000 0.169 11.704-Fatima M 0.129 0.097 0.000 Aranjan Lionel KARUNANAYAKE 0.200 0.164 0.240 11.392-0.000 A Neema Shafaq Zahoor 0.154 0.233 0.134 0.184 0.177 20.590-0.291 7.795-0 000 0.000 Neelam Aggarwal 0.280 0.222 0.346 5.997-0.000 Zhifena Shena 0.364 0.000 0.394 0.426 6.490-Yong Jun Cho 0.355 0.338 0.373 15.261-0.000 Kyae Hyung Kim 0.391 0.373 0 409 11 590-0 000 0.298 0.288 Zhang Mengmeng 0.307 36.690-0.000 0.452 0.109 Zahra Pourhashem 0.557 0.657 1.064 0 287 S. Tuzun 0.128 0.150 20.475-0.000 0.133 0.088 0.264 0.213 0.195 8.003-0.322 7.146-Maj Tripti Agrawal 0.000 0.000 Maninder Kaur Jongseok Lee 0.370 0.360 0.380 24.874-0.000 Ya?ar KESK?N 0 151 0 122 0 185 13 807-0 000 0.356 0.343 0.368 20.832-0.000 Kyung-Shik Lee Eun Jung Park Edith Ming Chu Lau 0.380 0.365 0 395 15 055-0 000 0.226 0.218 0.233 57.401-0.000 Zahra Mohammadi 0.372 0.303 0.447 3.317-0.001 Marzieh Saei Ghare Naz 0.521 0.463 0.577 0.702 0.483 Yan-Jiao Wang 0.309 0.241 0.387 4.580-0.000 Yi-Chien Lu 0.374 0.351 0.397 10.326-0.000 Dana Hyassat 0.375 0.347 0.405 8.101-0.000 Yu-Jun Kwon Gul Pinar 0 744 0.701 0 783 9.755 0 000 0.040 0.032 0.050 26.381-0.000 0.107 38.279-0.474 2.939-Limin Tian 0.096 0.087 0.000 Muhammad Farhan Abbas 0.422 0.372 0.003 Parvin Cheraghi 0.081 0.063 0.104 17.558-0.000 Nidhi S. Kadam 0.180 0.135 0.235 8.800-0.000 0.111 0.076 0.160 9.605-0.000 Neelam Kaushal Chi?Hua Ko 0.097 0.088 0.107 40.349-0.000 0.295 0.252 0.342 7.871-P. Modagan 0.000 Padmanabhan. K 0.159 0.120 0.208 10.004-0.000 0.369 0.301 0.001 Hasanga Rathnayake 0.443 3.426-Shriraj Shrestha 0.090 0.063 0.126 11.900-0.000 Shaanthana Subramaniam 0 189 0 139 0.252 7.753-0 000 0.640 0.614 9.956 Peizhi Wang 0.666 0.000 Qiang Zeng Kyeong Jin Kim 0.291 0.285 0.298 57.179-0 000 0.250 0.196 0.313 6.861-0.000 0.155 Mamatov Sagynali Murzaevich 0.130 0.184 16.138-0.000 E' ric Lespessailles 0.086 0.109 33.749-0.000 Henrik G Ahlborg 0.150 0.120 0.186 13.262-0.000 Patrizia D'Amelio 0.337 0.308 0.367 10.108-0.000 E. J. Marjanovic 0.258 0.216 0.304 9.014-0.000 Mar'?a-Jes'us G'omez-de-Tejada Romero 0.312 0 286 0.338 12 868-0 000 0.184 0.175 0.194 45.076-Loredana Cavalli 0.000 Marie-Therese Puth B.R. Nielsen 0.126 0.118 0.135 48.521-0 000 0.179 0.273 8.976-0.222 0.000 ALEXANDRE FAISAL-CURY1 0.320 0.292 0.350 11.095-0.000 Julie Robitaille 0.055 0.050 0.060 58.227-0.000 0.425 0.424 0.000 H. Cheng 0.426110.838-John Londono Carlos Mautalen 0.048 0.035 0.065 17 996. 0 000 0.187 0.177 0.198 42.253-0.000 0.138 17.031-0.211 9.333-0.000 Sabrina E Noel 0.112 0.090 Ricardo M. Lima 0.158 0.117 TO Alonge 0.658 0.633 0.682 11.741 0.000 0.417 4.858-0.321 7.209-0.000 PO Ezeonu 0.364 0.314 Fred Chuma Sitati 0.264 0.213 0.000 E. P. Boschitsch 0.135 0.133 0.137200.042-0.000 0.231 0.198 0.269 11.768-0.000 -0.50 0.00 -0.25 0.25 0.50 Favours A Favours B

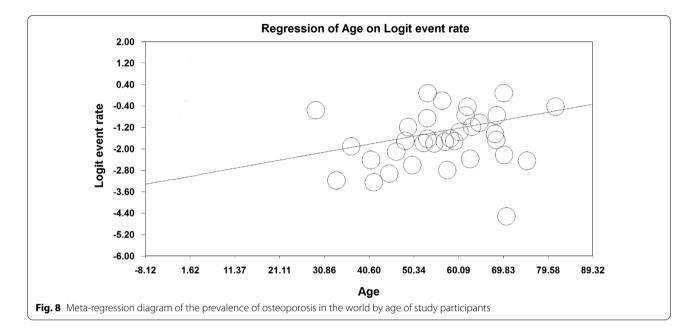

Meta Analysis


Fig. 4 Overall prevalence of osteoporosis in women of the world based on a random effects model

Study name		Statistics for each study					Event rate and 95% CI			
	Event rate	Lower limit		Z-Value	p-Value					
Mahmoud I El-Desouki	0.235	0.198	0.278	10.351-	0.000	1	1	1		1
Nan-Ping Yang	0.016	0.015	0.018	68.868-	0.000					
Didem Arslantas	0.098	0.076	0.125	15.769-	0.000					
Montchai Chumnumnawin	0.050	0.036	0.070	16.477-	0.000				_	
Sarath Lekamwasam	0.058	0.045	0.073	22.052-	0.000					
Aranjan Lionel KARUNANAYAKE	0.061	0.038	0.096	10.928-	0.000					
Yong Jun Choi	0.075	0.064	0.087	30.287-	0.000					
Zhang Mengmeng	0.235	0.226	0.245	42.683-	0.000					
Zahra Pourhashem	0.124	0.073	0.202	6.604-	0.000			14	- T	
S. Tuzun	0.075	0.060	0.094	20.333-	0.000					
Neeraj Kumar Agrawal	0.085	0.053			0.000					
Jongseok Lee	0.078	0.072	0.084	58.634-	0.000					
Ya?ar KESK?N	0.107	0.063			0.000			17	-	
Kyung-Shik Lee	0.113	0.105		49.632-	0.000					
Eun Jung Park	0.073	0.065	0.082	38.629-	0.000					
Zahra Mohammadi	0.440	0.359	0.525	1.379-	0.168			1-	· -	÷
Yan-Jiao Wang	0.189	0.136	0.256	7.302-	0.000				- 	-
Khurshid A. Bhat	0.191	0.146	0.245	8.812-	0.000					
Yi-Chien Lu	0.255			21.049-	0.000					
Yu-Jun Kwon	0.427		0.505	1.829-	0.067				T -	ł
Limin Tian	0.081	0.072		37.515-	0.000					-1
Parvin Cheraghi	0.078	0.063		21.736-	0.000					
Nidhi S. Kadam	0.145		0.202		0.000					
Neelam Kaushal	0.039			10.861-	0.000				-	
P. Modagan	0.197	0.160		10.884-	0.000					
Jung Eun Yoo	0.050	0.045		50.133-	0.000				_	
Abdulaziz Ahmed Abdulaziz	0.260		0.341	5.260-	0.000				-	
Shaanthana Subramaniam	0.115	0.076		8.779-	0.000				■- T	
Peizhi Wang	0.371		0.400	8.289-	0.000					
Qiang Zeng	0.065	0.061		95.922-	0.000					
Mamatov Sagynali Murzaevich	0.128	0.101		14.468-	0.000					
Florent Richy	0.203		0.251	9.712-	0.000			· · ·		
Loredana Cavalli	0.071	0.057		22.785-	0.000					
Marie-Therese Puth	0.039	0.034		43.678-	0.000				'	
B.R. Nielsen	0.151	0.110			0.000				■	
H. Cheng	0.101	0.100		395.039-	0.000					
Arthur Swislocki	0.311	0.231		3.785-	0.000				╸┼═╾	
Robert Ferrari	0.011	0.005		11.012-	0.000					
Sabrina E Noel	0.088	0.060		10.945-	0.000					
TO Alonge	0.437	0.406		3.919-	0.000					
	0.117	0.096		18.376-	0.000				▲ ╹	
	5.117	0.000	0.171	10.010-	0.000	-0.50	-0.25	0.00	0.25	I 0.50
						-0.50	-0.20	0.00	0.23	0.00
							Favours A		Favours B	

population suffers from a deficiency of Vitamin D and hip fractures occur about a decade earlier than in Western nations. Therefore, osteoporosis is a major concern for this ageing population [101, 102].

Although there is no direct evidence that screening for osteoporosis reduces fractures, there is good indirect evidence that screening is effective in identifying post-menopausal women with low bone mineral density. Health policymakers can also help prevent and reduce osteoporosis in the community through a variety of means, such as moderate physical activity, an appropriate intake of calcium and vitamin D, cessation of smoking, and pharmaceutical intervention in high-risk groups. Also, effective dissemination of findings from research should be used to increase the awareness of osteoporosis, both among the general population and in the health services, to increase early detection of risk factors and to motivate preventive measures [90–102].


Strengths and limitation

The most important strength of the present study is the comprehensive review of all databases, regular review of articles by three researchers and performing metaregression and subgroup analysis to obtain more accurate information. The most important limitations of the present study were to encounter low-quality articles that had been published for years and their full text was not available for further review.

The present study aims to remove the limitations of systematic review studies and other meta-analyses in this field by using a comprehensive review of different sources, long time period, different meta-regression and subgroup analysis, and considering that articles in languages other than English and Persian were not considered and age-specific prevalence of osteoporosis were not reported, can be mentioned as limitations of this study.

Conclusion

This study shows that the prevalence of osteoporosis in the world is very high, especially the prevalence in Africa and Europe is much higher and more significant. According to the medical, economic, and social burden of osteoporosis, providing a robust and comprehensive estimate

of the prevalence of osteoporosis in the world can facilitate decisions in health system planning and policymaking, including an overview of the current and outlook for the future; provide the necessary facilities for the treatment of people with osteoporosis; reduce the severe risks that lead to death by preventing fractures.

Abbreviations

BMD: Bone mineral density; DXA: Dual-energy X-ray absorptiometry; SOS: Speed of sound; STROBE: Strengthening the Reporting of Observational Studies in Epidemiology for Cross-Sectional Study; PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analysis.

Acknowledgements

The authors thank the Student Research Committee of Kermanshah University of Medical Sciences.

Authors' contributions

MM and NS and LM and HGH contributed to the design, MM statistical analysis, participated in most of the study steps. MHB and MM and NS and ER prepared the manuscript. SHSH and LM and MM assisted in designing the study and helped in the interpretation of the study. All authors read and approved the final manuscript.

Funding

By Deputy for Research and Technology, Kermanshah University of Medical Sciences (IR) (3010862). This deputy has no role in the study process.

Availability of data and materials

Datasets are available through the corresponding author upon reasonable request.

Declarations

Ethics approval and consent to participate

Ethics approval was received from the ethics committee of the deputy of research and technology, Kermanshah University of Medical Sciences (IR. KUMS.REC.1399.929).

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no conflict of interest.

Author details

¹Department of Biostatistics, School of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran. ²Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran. ³Department of Statistics, Science and Research Branch, Islamic Azad University, Tehran, Iran. ⁴Department of Biology, Faculty of Science, University Putra Malaysia, Serdang, Selangor, Malaysia. ⁵Department of Nursing, School of Nursing and Midwifery, Kermanshah University of Medical Sciences, Kermanshah, Iran.

Received: 26 August 2021 Accepted: 4 October 2021 Published online: 17 October 2021

References

- 1. Mohammed ZA, Almeshal MA, Aldawsari SA, Alanazi MA, Alanazi AD, Alqahtani FA, et al. Prevalence of fracture and osteoporosis and awareness of osteoporosis among general population of Majmaah City IN 2018. Indo Am J Pharmaceut Sci. 2019;6(1):357–61.
- Marcucci G, Brandi ML. Rare causes of osteoporosis. Clin Cases Miner Bone Metab. 2015;12(2):151.
- Aoki TT, Grecu EO, Srinivas PR, Prescott P, Benbarka M, Arcangeli MM. Prevalence of osteoporosis in women: variation with skeletal site of measurement of bone mineral density. Endocr Pract Off J Am Coll Endocrinol Am Assoc Clin Endocrinol. 2000;6(2):127–31.
- Wu XP, Liao EY, Luo XH, Dai RC, Zhang H, Peng J. Age-related variation in quantitative ultrasound at the tibia and prevalence of osteoporosis in native Chinese women. Br J Radiol. 2003;76(909):605–10.
- Askari M, Lotfi MH, Owlia MB, Fallahzadeh H, Mohammadi M. Survey of osteoporosis risk factors (review article). J Sabzevar Univ Med Sci. 2019;25(6):854–63.
- Faisal-Cury A, Zacchello KP. Osteoporosis: prevalence and risk factors among > 49 year-old women in private practice environment. Acta Ortop Bras. 2007;15(3):146–50.
- Pinar G, Kaplan S, Pinar T, Akalin A, Abay H, Akyol M, et al. The prevalence and risk factors for osteoporosis among 18- to 49-year-old Turkish women. Women Health. 2017;57(9):1080–97.

- Zhang Q, Cai WW, Wang GH, Shen XJ. Prevalence and contributing factors of osteoporosis in the elderly over 70 years old: an epidemiological study of several community health centers in Shanghai. Ann Palliat Med. 2020;9(2):231–8.
- Jalava T, Sarna S, Pylkkänen L, Mawer B, Kanis JA, Selby P, et al. Association between vertebral fracture and increased mortality in osteoporotic patients. J Bone Miner Res. 2003;18(7):1254–60.
- Aicale R, Tarantino D, Maccauro G, Peretti GM, Maffulli N. Genetics in orthopaedic practice. J Biol Regul Homeost Agents. 2019;33(2 Suppl. 1):103–17.
- Conti V, Russomanno G, Corbi G, Toro G, Simeon V, Filippelli W, et al. A polymorphism at the translation start site of the vitamin D receptor gene is associated with the response to anti-osteoporotic therapy in postmenopausal women from southern Italy. Int J Mol Sci. 2015;16(3):5452–66.
- 12. Jarupanich T. Prevalence and risk factors associated with osteoporosis in women attending menopause clinic at Hat Yai Regional Hospital. J Med Assoc Thailand Chotmaihet Thangphaet. 2007;90(5):865–9.
- Lee CNY, Lam SC, Tsang AYK, Ng BTY, Leung JCY, Chong ACY. Preliminary investigation on prevalence of osteoporosis and osteopenia: should we tune our focus on healthy adults? Jpn J Nurs Sci. 2015;12(3):232–48.
- Cheng H, Gary LC, Curtis JR, Saag KG, Kilgore ML, Morrisey MA, et al. Estimated prevalence and patterns of presumed osteoporosis among older Americans based on Medicare data. Osteoporos Int J Establ Result Coop Between Eur Found Osteoporos Natl Osteoporos Found U S A. 2009;20(9):1507–15.
- Park SB, Kim J, Jeong JH, Lee JK, Chin DK, Chung CK, et al. Prevalence and incidence of osteoporosis and osteoporotic vertebral fracture in Korea: nationwide epidemiological study focusing on differences in socioeconomic status. Spine. 2016;41(4):328–36.
- Vu TT, Nguyen CK, Nguyen TL, Le BM, Le NguyenTrung D, Bui TN, et al. Determining the prevalence of osteoporosis and related factors using quantitative ultrasound in Vietnamese adult women. Am J Epidemiol. 2005;161(9):824–30.
- Modagan P, Silambanan S, Menon PG, Arunalatha P. Comparison of bone mineral density with biochemical parameters and prevalence of osteopenia and osteoporosis in South Indian population. Biomed Pharmacol J. 2018;11(4):2209–14.
- Kaushal N, Vohora D, Jalali RK, Jha S. Prevalence of osteoporosis and osteopenia in an apparently healthy Indian population—a cross-sectional retrospective study. Osteoporos Sarcopenia. 2018;4(2):53–60.
- Yang N-P, Deng C-Y, Chou Y-J, Chen P-Q, Lin C-H, Chou P, et al. Estimated prevalence of osteoporosis from a Nationwide Health Insurance database in Taiwan. Health Policy (Amsterdam, Netherlands). 2006;75(3):329–37.
- Kazeminia M, Abdi A, Shohaimi SH, Jalali R, Vaisi-Raygani AK, Salari N. Dental caries in primary and permanent teeth in children's worldwide, 1995 to 2019: a systematic review and meta-analysis. Head Face Med. 2020;16(1):22.
- 21. El-Desouki MI, Sulimani RA. High prevalence of osteoporosis in Saudi men. Saudi Med J. 2007;28(5):774–7.
- Yoon HK, Kim SW, Yim CH, Chung HY, Oh HJ, Han KO, et al. Metabolic characteristics and prevalence of osteoporosis among women in Tae-An area. J Korean Med Sci. 2001;16(3):323–7.
- Shilbayeh S. Prevalence of osteoporosis and its reproductive risk factors among Jordanian women: a cross-sectional study. Osteoporos Int J Establ Result Coop Between Eur Found Osteoporos Natl Osteoporos Found U S A. 2003;14(11):929–40.
- Lekamwasam S, Wijerathne L, Rodrigo M, Hewage U. Prevalence of osteoporosis among post-menopausal women in Sri Lanka. Osteoporos Int. 2006;17(6):955.
- Roy R, Chibber G, Marumudi E, Srivasta M, Ammini AC. Prevalence of osteoporosis among elderly women living in Delhi and rural Haryana. Osteoporos Int. 2006;17:S208.
- Bener A, Hammoudeh M, Zirie M. Prevalence and predictors of osteoporosis and the impact of life style factors on bone mineral density. APLAR J Rheumatol. 2007;10(3):227–33.
- Arslantas D, Metintasa S, Unsal A, Isikli B, Kalyoncu C, Arslantas A. Prevalence of osteoporosis in middle anatolian population using calcaneal ultrasonography method. Maturitas. 2008;59(3):234–41.

- Chumnumnawin M, Sawetchaikul S, Sresuriyasawad V. Prevalence of osteoporosis of the priests. J Med Assoc Thailand Chotmaihet Thangphaet. 2008;91(Suppl 1):S57–62.
- 29. Miura S, Saavedra OL, Yamamoto S. Osteoporosis in urban post-menopausal women of the Philippines: prevalence and risk factors. Arch Osteoporos. 2008;3(1–2):17–24.
- Shokrollahi P, Rivaz M, Robatjaze M. Prevalence of risk factors of osteoporosis in post-menopausal women in Shiraz, Southern Iran. Iran Red Crescent Med J. 2008;10(3):190–3.
- Fatima M, Nawaz H, Kassi M, Rehman R, Kasi PM, Kassi M, et al. Determining the risk factors and prevalence of osteoporosis using quantitative ultrasonography in Pakistani adult women. Singap Med J. 2009;50(1):20–8.
- Lekamwasam S, Wijayaratne L, Rodrigo M, Hewage U. Prevalence and determinants of osteoporosis among men aged 50 years or more in Sri Lanka: a community-based cross-sectional study. Arch Osteoporos. 2009;4(1–2):79–84.
- Karunanayake AL, Pinidiyapathirage MJ, Wickremasinghe AR. Prevalence and predictors of osteoporosis in an urban Sri Lankan population. Int J Rheum Dis. 2010;13(4):385–90.
- 34. Neema A, Shweta V, Inamdar SA. Prevalence of osteoporosis using quantitative ultrasound for menopausal women in rural and urban area. Internet J Gynecol Obstet. 2010;13:1.
- Zahoor S, Ayub U. Prevalence of osteoporosis in post-menopausal women visiting police and services hospital Peshawar, NWFP. J Postgrad Med Inst. 2010;24(1):04–7.
- Aggarwal N, Raveendran A, Khandelwal N, Sen RK, Thakur JS, Dhaliwal LK, et al. Prevalence and related risk factors of osteoporosis in peri- and post-menopausal Indian women. J Mid Life Health. 2011;2(2):81–5.
- Sheng Z, Xu K, Ou Y, Dai R, Luo X, Liu S, et al. Relationship of body composition with prevalence of osteoporosis in central south Chinese post-menopausal women. Clin Endocrinol. 2011;74(3):319–24.
- 38. Choi YJ, Oh HJ, Kim DJ, Lee Y, Chung YS. The prevalence of osteoporosis in Korean adults aged 50 years or older and the higher diagnosis rates in women who were beneficiaries of a national screening program: the Korea National Health and Nutrition Examination Survey 2008–2009. J Bone Miner Res Off J Am Soc Bone Miner Res. 2012;27(9):1879–86.
- Kim KH, Lee K, Ko Y-J, Kim SJ, Oh SI, Durrance DY, et al. Prevalence, awareness, and treatment of osteoporosis among Korean women: the Fourth Korea National Health and Nutrition Examination Survey. Bone. 2012;50(5):1039–47.
- Mengmeng Z, Yagang L, Ying L, Xuena P, Binbin L, Liu Z. A study of bone mineral density and prevalence of osteoporosis in Chinese people of Han nationality from Changchun. Arch Osteoporos. 2012;7:31–6.
- Pourhashem Z, Bayani M, Noreddini H, Bijani A, Hosseini SR. Prevalence of osteoporosis and its association with serum vitamin D level in older people in Amirkola, North of Iran. Caspian J Intern Med. 2012;3(1):347–53.
- Tuzun S, Eskiyurt N, Akarirmak U, Saridogan M, Senocak M, Johansson H, et al. Incidence of hip fracture and prevalence of osteoporosis in Turkey: the FRACTURK study. Osteoporos Int. 2012;23(3):949–55.
- 43. Agrawal NK, Sharma B. Prevalence of osteoporosis in otherwise healthy Indian males aged 50 years and above. Arch Osteoporos. 2013;8:116.
- 44. Agrawal T, Verma AK. Cross sectional study of osteoporosis among women. Med J Armed Forces India. 2013;69(2):168–71.
- 45. Kaur M. Prevalence and associated risk factors of osteoporosis in postmenopausal women in North India. Malays J Nutr. 2013;19(3):285–92.
- Lee J, Lee S, Jang S, Ryu OH. Age-related changes in the prevalence of osteoporosis according to gender and skeletal site: the Korea National Health and Nutrition Examination Survey 2008–2010. Endocrinol Metab (Seoul, Korea). 2013;28(3):180–91.
- Keskin Y, Cekin MD, Gunduz H, Luleci NE, Giray E, Sur H, et al. The prevalence of osteoporosis in the Thrace Region of Turkey: a communitybased study. Turkiye Fiziksel Tip Ve Rehabilitasyon Dergisi Turk J Phys Med Rehabil. 2014;60(4):335–40.
- Lee KS, Bae SH, Lee SH, Lee J, Lee DR. New reference data on bone mineral density and the prevalence of osteoporosis in Korean adults aged 50 years or older: the Korea National Health and Nutrition Examination Survey 2008–2010. J Korean Med Sci. 2014;29(11):1514–22.
- Park EJ, Joo IW, Jang MJ, Kim YT, Oh K, Oh HJ. Prevalence of osteoporosis in the Korean population based on Korea National Health and

Nutrition Examination Survey (KNHANES), 2008–2011. Yonsei Med J. 2014;55(4):1049–57.

- Lau EMC, Chung HL, Ha PC, Tang H, Lam D. Bone mineral density, anthropometric indices, and the prevalence of osteoporosis in Northern (Beijing) Chinese and Southern (Hong Kong) Chinese Women—the largest comparative study to date. J Clin Densitom. 2015;18(4):519–24.
- Mohammadi Z, Keshtkar A, Fayyazbakhsh F, Ebrahimi M, Amoli MM, Ghorbani M, et al. Prevalence of osteoporosis and vitamin D receptor gene polymorphisms (Fokl) in an Iranian general population based study (Kurdistan) (IMOS). Med J Islam Repub Iran. 2015;29:238.
- Saei Ghare Naz M, Ozgoli G, Aghdashi MA, Salmani F. Prevalence and risk factors of osteoporosis in women referring to the bone densitometry academic center in Urmia, Iran. Glob J Health Sci. 2015;8(7):135–45.
- 53. Wang YJ, Wang Y, Zhan JK, Tang ZY, He JY, Tan P, et al. Sarco-osteoporosis: prevalence and association with frailty in Chinese communitydwelling older adults. J Am Geriatr Soc. 2015;63:S352–3.
- 54. Bhat KA, Kakaji M, Awasthi A, Shukla M, Dubey M, Srivastava R, et al. High prevalence of osteoporosis and morphometric vertebral fractures in Indian males aged 60 years and above: should age for screening be lowered? J Clin Densitom Off J Int Soc Clin Densitom. 2018;21(4):517–23.
- Lu YC, Lin YC, Lin YK, Liu YJ, Chang KH, Chieng PU, et al. Prevalence of osteoporosis and low bone mass in older Chinese population based on bone mineral density at multiple skeletal sites. Sci Rep. 2016;6:25206.
- Hyassat D, Alyan T, Jaddou H, Ajlouni KM. Prevalence and risk factors of osteoporosis among Jordanian postmenopausal women attending the National Center for Diabetes, Endocrinology and Genetics in Jordan. BioResearch Open Access. 2017;6(1):85–93.
- Kwon YJ, Park KS, Choi BH, Kim BS, Ha YC. Prevalence of osteoporosis and effectiveness of screening test using ultrasound bone densitometry and education in a community-dwelling population. J Korean Med Sci. 2017;32(2):352–6.
- Tian L, Yang R, Wei L, Liu J, Yang Y, Shao F, et al. Prevalence of osteoporosis and related lifestyle and metabolic factors of post-menopausal women and elderly men: a cross-sectional study in Gansu province, Northwestern of China. Medicine. 2017;96(43):e8294.
- Abbas MF, Abbas F, Asghar MS. Prevalence of osteoporosis and associated risk factors in women. Indo Am J Pharmaceut Sci. 2018;5(12):15659–63.
- 60. Cheraghi P, Cheraghi Z, Bozorgmehr S. The prevalence and risk factors of osteoporosis among the elderly in Hamadan province: a cross sectional study. Med J Islam Repub Iran. 2018;32:111.
- Kadam NS, Chiplonkar SA, Khadilkar AV, Khadilkar VV. Prevalence of osteoporosis in apparently healthy adults above 40 years of age in Pune City, India. Indian J Endocrinol Metab. 2018;22(1):67–73.
- Seyfizadeh N, Seyfizadeh N, Negahdar H, Hosseini SR, Nooreddini H, Parsian H. ABO blood group and prevalence of osteoporosis and osteopenia in the elderly population: an Amirkola Health and Ageing Project (AHAP)-based study. J Clin Densitom Off J Int Soc Clin Densitom. 2018;21(2):200–4.
- 63. Yoo JE, Park HS. Prevalence and associated risk factors for osteoporosis in Korean men. Arch Osteoporos. 2018;13(1):88.
- Abdulaziz AA, Hendi OM, Abdelbaky A, Alzaidi SA, Abdulaziz GA, Abdulaziz RA. Prevalence and risk factors of osteoporosis in women aged above 60 years at Taif Governorate, Saudi Arabia. Indo Am J Pharmaceut Sci. 2019;6(1):773–80.
- Padmanabhan K, Paul J, Sudhakar S, Senthil Selvam P, Sathya Priya V, Veena KS. Which is more prevalent among the female population osteopenia or osteoporosis? A cross sectional study. Res J Pharmacy Technol. 2019;12(3):1163–8.
- 66. Rathnayake H, Lekamwasam S, Wickramatilake C, Lenora J. Trabecular bone score and bone mineral density reference data for women aged 20–70 years and the effect of local reference data on the prevalence of post-menopausal osteoporosis: a cross-sectional study from Sri Lanka. Arch Osteoporos. 2019;14(1):91.
- Shrestha S, Dahal S, Bhandari P, Bajracharya S, Marasini A. Prevalence of osteoporosis among adults in a tertiary care hospital: a descriptive cross-sectional study. JNMA J Nepal Med Assoc. 2019;57(220):393–497.
- 68. Subramaniam S, Chan CY, Soelaiman IN, Mohamed N, Muhammad N, Ahmad F, et al. Prevalence and predictors of osteoporosis among

the Chinese population in Klang Valley, Malaysia. Appl Sci Basel. 2019;9(9):1820.

- 69. Wang PZ, Abdin E, Shafie S, Chong SA, Vaingankar JA, Subramaniam M. Estimation of prevalence of osteoporosis using OSTA and its correlation with sociodemographic factors, disability and comorbidities. Int J Environ Res Public Health. 2019;16(13):2338.
- Zeng Q, Li N, Wang QQ, Feng J, Sun DM, Zhang Q, et al. The prevalence of osteoporosis in China, a nationwide, multicenter DXA survey. J Bone Miner Res. 2019;34(10):1789–97.
- Kim KJ, An JH, Kim KJ, Yu JH, Kim NH, Yoo HJ, et al. Prevalence of osteoporosis among North Korean women refugees living in South Korea: a comparative cross-sectional study. BMJ Open. 2020;10(6):e036230.
- 72. Murzaevich MS, Imanalieva F, Uulu CM, Tagaev T, Yethindra V, Arstanbekovna M. Prevalence of osteopenia and osteoporosis in the Kyrgyz Republic. Indian J Forensic Med Toxicol. 2020;14(3):1980–4.
- Richy F, Gourlay ML, Garrett J, Hanson L, Reginsterm J-Y. Osteoporosis prevalence in men varies by the normative reference. J Clin Densitom. 2004;7(2):127–33.
- Lespessailles E, Cotte FE, Roux C, Fardellone P, Mercier F, Gaudin AF. Prevalence and features of osteoporosis in the French general population: the Instant study. Jt Bone Spine. 2009;76(4):394–400.
- Ahlborg HG, Rosengren BE, Järvinen TL, Rogmark C, Nilsson JK, Sernbo I, et al. Prevalence of osteoporosis and incidence of hip fracture in women—secular trends over 30 years. BMC Musculoskelet Disord. 2010;11:1–7.
- D'Amelio P, Spertino E, Martino F, Isaia GC. Prevalence of post-menopausal osteoporosis in Italy and validation of decision rules for referring women for bone densitometry. Calcif Tissue Int. 2013;92(5):437–43.
- Marjanovic EJ, Southern HN, Coates P, Adams JE, Walsh T, Horner K, et al. Do patients with osteoporosis have an increased prevalence of periodontal disease? A cross-sectional study. Osteoporos Int J Establ Result Coop Between Eur Found Osteoporos Natl Osteoporos Found U S A. 2013;24(7):1973–9.
- Gómez-de-Tejada Romero MJ, Navarro Rodríguez MD, Saavedra Santana P, Quesada Gómez JM, Jódar Gimeno E, Sosa HM. Prevalence of osteoporosis, vertebral fractures and hypovitaminosis D in postmenopausal women living in a rural environment. Maturitas. 2014;77(3):282–6.
- Cavalli L, Guazzini A, Cianferotti L, Parri S, Cavalli T, Metozzi A, et al. Prevalence of osteoporosis in the Italian population and main risk factors: results of BoneTour Campaign. BMC Musculoskelet Disord. 2016;17(1):396.
- Puth MT, Klaschik M, Schmid M, Weckbecker K, Münster E. Prevalence and comorbidity of osteoporosis- a cross-sectional analysis on 10,660 adults aged 50 years and older in Germany. BMC Musculoskelet Disord. 2018;19(1):144.
- Nielsen BR, Andersen HE, Haddock B, Hovind P, Schwarz P, Suetta C. Prevalence of muscle dysfunction concomitant with osteoporosis in a home-dwelling Danish population aged 65–93 years—the Copenhagen Sarcopenia study. Exp Gerontol. 2020;138:110974.
- Robitaille J, Yoon PW, Moore CA, Liu T, Irizarry-Delacruz M, Looker AC, et al. Prevalence, family history, and prevention of reported osteoporosis in U.S. women. Am J Prev Med. 2008;35(1):47–54.
- Swislocki A, Green JA, Heinrich G, Barnett CA, Meadows ID, Harmon EB, et al. Prevalence of osteoporosis in men in a VA rehabilitation center. Am J Manag Care. 2010;16(6):427–33.
- Londono J, Valencia P, Santos AM, Gutiérrez LF, Baquero R, Valle-Oñate R. Risk factors and prevalence of osteoporosis in premenopausal women from poor economic backgrounds in Colombia. Int J Women's Health. 2013;5:425–30.
- Ferrari R. Prevalence of osteoporosis in men aged 65–75 in a primary care setting. A practice audit after application of the Canadian 2010 guidelines for osteoporosis screening. Clin Rheumatol. 2015;34(3):523–7.
- Mautalen C, Schianchi A, Sigal D, Gianetti G, Vidan V, Bagur A, et al. Prevalence of osteoporosis in women in Buenos Aires based on bone mineral density at the lumbar spine and femur. J Clin Densitom Off J Int Soc Clin Densitom. 2016;19(4):471–6.
- 87. Noel SE, Mangano KM, Griffith JL, Wright NC, Dawson-Hughes B, Tucker KL. Prevalence of osteoporosis and low bone mass among Puerto

Rican older adults. J Bone Miner Res Off J Am Soc Bone Miner Res. 2018;33(3):396–403.

- Lima RM, de Oliveira RJ, Raposo R, Neri SGR, Gadelha AB. Stages of sarcopenia, bone mineral density, and the prevalence of osteoporosis in older women. Arch Osteoporos. 2019;14(1):38.
- Alonge TO, Adebusoye LA, Ogunbode AM, Olowookere OO, Ladipo MMA, Balogun WO, et al. Factors associated with osteoporosis among older patients at the Geriatric Centre in Nigeria: a cross-sectional study. S Afr Fam Pract. 2017;59(3):87–93.
- Ezeonu PO, Agwu UM, Ajah LO, Dimejesi IBO, Ogbonnaya LU, Umeora OUJ, et al. The prevalence of osteoporosis among antenatal clinic attendees in a rural mission hospital in South-East Nigeria. Niger J Clin Pract. 2017;20(12):1522–6.
- Sitati FC, Gichangi P, Obimbo MM. Prevalence of osteoporosis and its associated factors among post-menopausal women in Kiambu County, Kenya: a household survey. Arch Osteoporos. 2020;15(1):31.
- Boschitsch EP, Durchschlag E, Dimai HP. Age-related prevalence of osteoporosis and fragility fractures: real-world data from an Austrian Menopause and Osteoporosis Clinic. Climact J Int Menopause Soc. 2017;20(2):157–63.
- Paruk F, Tsabasvi M, Kalla AA. Osteoporosis in Africa—where are we now. Clin Rheumatol. 2020;40:3419–28.
- 94. Chen P, Li Z, Hu Y. Prevalence of osteoporosis in China: a meta-analysis and systematic review. BMC Public Health. 2016;16(1):1039.
- Wade SW, Strader C, Fitzpatrick LA, Anthony MS, O'Malley CD. Estimating prevalence of osteoporosis: examples from industrialized countries. Arch Osteoporos. 2014;9(1):182.
- 96. Zamani M, Zamani V, Heidari B, Parsian H, Esmaeilnejad-Ganji SM. Prevalence of osteoporosis with the World Health Organization diagnostic

criteria in the Eastern Mediterranean Region: a systematic review and meta-analysis. Arch Osteoporos. 2018;13(1):129.

- 97. Irani AD, Poorolajal J, Khalilian A, Esmailnasab N, Cheraghi Z. Prevalence of osteoporosis in Iran: a meta-analysis. J Res Med Sci. 2013;18(9):759.
- Wright NC, Looker AC, Saag KG, Curtis JR, Delzell ES, Randall S, et al. The recent prevalence of osteoporosis and low bone mass in the United States based on bone mineral density at the femoral neck or lumbar spine. J Bone Miner Res Off J Am Soc Bone Miner Res. 2014;29(11):2520–6.
- 99. Mithal A, Kaur P. Osteoporosis in Asia: a call to action. Curr Osteoporos Rep. 2012;10(4):245–7.
- Riggs BL, Melton LJ. The worldwide problem of osteoporosis: insights afforded by epidemiology. Bone. 1995;17(5, Supplement 1):S505–11.
- Mithal A, Bansal B, Kyer CS, Ebeling P. The Asia-Pacific Regional Audit-Epidemiology, Costs, and Burden of Osteoporosis in India 2013: a report of International Osteoporosis Foundation. Indian J Endocrinol Metab. 2014;18(4):449.
- 102. Hernlund E, Svedbom A, Ivergård M, Compston J, Cooper C, Stenmark J, et al. Osteoporosis in the European Union: medical management, epidemiology and economic burden. A report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch Osteoporos. 2013;8(1–2):136.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:

- fast, convenient online submission
- thorough peer review by experienced researchers in your field
- rapid publication on acceptance
- support for research data, including large and complex data types
- gold Open Access which fosters wider collaboration and increased citations
- maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

