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Combination of platelet-rich plasma and
bone marrow mesenchymal stem cells
enhances tendon–bone healing in a rabbit
model of anterior cruciate ligament
reconstruction
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Abstract

Background: The objective of this study was to investigate the potency of platelet-rich plasma (PRP) combined
with bone marrow mesenchymal stem cells (BMSCs) to promote tendon–bone healing in a rabbit model.

Methods: In the in vitro study, the effects of PRP on osteogenic induction of BMSCs were analysed. Later, PRP
with or without BMSCs was used in the rabbit model of anterior cruciate ligament reconstruction. Specimens
were harvested 8 weeks postoperatively to evaluate tendon–bone healing by histology, radiology, and biomechanical
testing.

Results: The in vitro study revealed that collagen I, osteocalcin, and osteopontin expression was higher in BMSCs
co-cultured with PRP for 14 days. The in vivo study revealed a more mature tendon–bone interface using light
microscopy, a more newly formed bone at the bone tunnel walls detected by micro-computed tomography, and
a significantly higher failure load as assessed by biomechanical testing in the BMSC + PRP group than in the
control and PRP groups.

Conclusions: These results indicate that the combination of PRP and BMSCs promotes tendon–bone healing and
has potential for clinical use.

Keywords: Platelet-rich plasma, Bone marrow mesenchymal stem cells, Anterior cruciate ligament, Reconstruction,
Tendon–bone healing
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Background
Anterior cruciate ligament (ACL) injuries are common,
frequently lead to knee disability, and have low intrinsic
regenerative ability [1]. ACL reconstruction is the gold
standard because of its positive outcomes. Hamstring ten-
don grafts have been widely used due to the lower donor-
site morbidity compared to bone–patellar tendon–bone
(B-PT-B) grafts [2]. However, tendon–bone healing
between a hamstring tendon graft and the created bone
tunnels is associated with significantly slower bone healing
compared with the B-PT-B graft [3]. Therefore, means for
improving tendon–bone healing after reconstruction have
become a major research focus in sports medicine [4].
Platelet-rich plasma (PRP), an autologous enriched

source of various growth factors, such as platelet-derived
growth factor (PDGF), platelet-derived epidermal growth
factor (PDEGF), platelet-derived angiogenesis factor,
transforming growth factor (TGF), insulin-like growth
factor, and vascular endothelial growth factor (VEGF),
has been widely used during trauma and orthopaedic
surgery [5, 6]. PRP can clinically accelerate the healing
of hard and soft tissues after maxillofacial, plastic, der-
matologic, dental, and orthopaedic surgeries [7]. How-
ever, existing preclinical and clinical evidence regarding
PRP use in ACL surgery failed to demonstrate a clear
benefit [8]. Bone marrow mesenchymal stem cells
(BMSCs) have attracted much interest and have be-
come ideal seed cells for tissue engineering because of
their multipotentiality and self-renewal potential, as
well as their possible suitability for clinical use [9].
BMSCs have outstanding potential to promote tendon
regeneration [10], and their osteogenic differentiation
potential in vitro and bone formation capability on bio-
degradable scaffolds in vivo have been characterised in
several studies [11, 12]. Many studies have shown that
host cells containing BMSCs from surrounding bone
tunnel bone marrow contribute to tendon–bone heal-
ing [13, 14]. However, BMSCs in bone marrow are rare,
with only one BMSC detected in 1 × 105 bone marrow
mononuclear cells. PRP, as a storage vehicle for growth
factors such as PDGF, TGF-β, PDEGF, VEGF, and plate-
let factor-4, enhances osteogenic differentiation of
BMSCs [15]. Many studies have shown that factors that
positively affect bone formation and fracture healing
also positively affect tendon–bone healing [16].
In the present study, we seeded PRP and BMSCs at

the tendon–bone interface using fibrin glue to explore
whether tendon–bone healing is promoted by providing
BMSCs and an osteoinductive factor.

Methods
Preparation of PRP
Autologous PRP was prepared as described previously
[17]. Briefly, 10 mL of whole blood was drawn from the

marginal auricular vein using an 18-gauge catheter. The
blood was injected into a sterile centrifuge tube contain-
ing 1.5 mL of sodium citrate. The mixture was centri-
fuged at 1200×g for 10 min to separate the plasma from
the red blood cells. The plasma was centrifuged again at
2500×g at 4 °C for 20 min, and the precipitated platelets
(1 mL) were collected.

Isolation and culture of BMSCs
BMSCs were generated from bone marrow aspirates of
New Zealand White rabbits (age, 12 weeks; weight,
2.5 ± 0.2 kg), as described previously [18]. Mono-
nuclear cells were collected after centrifugation in
Ficoll–Hypaque gradient (Sigma Co., St. Louis, MO,
USA) and resuspended in Dulbecco’s modified Eagle
medium (DMEM) containing 10 % fetal bovine serum
(FBS; Gibco, Grand Island, NY, USA). After a 72-h
incubation at 37 °C in 5 % CO2, the non-adherent cells
were removed by changing the culture medium.
Adherent cells were subcultured when they reached
70–80 % confluence. A homogenous BMSC population
was obtained after 2 weeks of culture, and the third
passage was harvested for further use. The passage 3
cells were identified by detecting surface antigen
marker expression profiles using flow cytometry. The
osteogenic, chondrogenic, and adipogenic differenti-
ation abilities of the cells were determined using indu-
cing media for 3 weeks. Alizarin red, oil red O, and
alcian blue staining were performed.

Induction of osteogenic gene expression by PRP
Third passage BMSCs were harvested by trypsinisation
and centrifugation. After culturing for 24 h, the original
culture medium was removed. The BMSCs were
washed three times with PBS and incubated in DMEM
with 10 % PRP. In the control group, BMSCs were in-
cubated in DMEM with 10 % FBS. Total RNA was
extracted from cells cultured for 3, 7, and 14 days using
TRIzol reagent (Invitrogen, Carlsbad, CA, USA). RNA
concentration was determined with the NanoDrop
spectrophotometer (NanoDrop Technologies, Wil-
mington, DE, USA), and 200 ng of RNA was used to
synthesise complementary DNA (cDNA) using the
iScript cDNA synthesis kit (Bio-Rad Laboratories,
Hercules, CA, USA). The Stratagene M×3000P system
(Stratagene, La Jolla, CA, USA) was used to perform
and monitor the reactions. The QuantiTect SYBR
Green PCR kit (Qiagen, Valencia, CA, USA) was used
to quantify transcription levels of osteogenic genes, in-
cluding collagen I, osteocalcin, and osteopontin. The
glyceraldehyde-3-phosphate dehydrogenase gene was
amplified in parallel with the target genes. The primer
sequences are listed in Table 1.
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ACL reconstruction model in rabbits
Animal experiments were approved by the Zhejiang
University Ethics Committee. A total of 30 New Zealand
White rabbits (age, 12 weeks, and weight, 2.5 ± 0.2 kg)
were used in this study. All rabbits underwent ACL
reconstruction in the left hind leg after intravenous an-
aesthesia with 30 mg/kg body weight pentobarbital
sodium solution (Dawen Biotech, Seoul, Korea). After
shaving and disinfecting the left hind leg, a lateral para-
patellar incision was made to expose the knee joint.
After the native ACL was excised, the tibial and femoral
bone tunnels were created with a 2.5-mm-diameter drill
(Fig. 1b). The ipsilateral semitendinosus tendon was har-
vested to reconstruct the ACL (Fig. 1a). The rabbits were
divided randomly into three groups. In the first group, a
normal hamstring tendon was used for ACL reconstruc-
tion (control group). Rabbits from the second group
(PRP group) received hamstring tendons wrapped with
0.1 mL PRP immobilised in 0.1 mL fibrin glue (TISSEEL
kit; Baxter AG, Vienna, Austria) for ACL reconstruction.
In the third group (BMSC + PRP group), 1 × 107 BMSCs

were immobilised in 0.2 mL PRP and 0.1 mL fibrin glue
and used for ACL reconstruction. The PRP concentra-
tion and number of BMSCs were determined by flow
cytometry. Grafts for the PRP and BMSC + PRP groups
were wrapped with glue immediately before insertion
into the bone tunnels. Both ends of the graft were fixed
by sutures tied over screws in the femur and tibia
(Fig. 1c). Animals were allowed to move freely postoper-
atively. All rabbits were sacrificed with a lethal injection
of pentobarbital 8 weeks postoperatively for assessment;
half of the specimens in each group (n = 5/group) were
used for the histological assessment and the other half
(n = 5/group) were used for radiological and biomechan-
ical assessments.

Histology
The specimens were fixed in 4 % paraformaldehyde for
72 h after harvest. All samples were decalcified in 10 %
EDTA with PBS at room temperature for 4 weeks. The
samples were dehydrated through a graded ethanol
series, embedded in paraffin wax, and sectioned at
3 μm parallel to the longitudinal axis of the bone tun-
nel. Haematoxylin and eosin (H&E) and Russell–Movat
pentachrome staining were performed to evaluate tendon–
bone healing for conventional light microscopy.

Radiology and biomechanical testing
The specimens for radiology and biomechanical testing
were frozen at −80 °C immediately after harvest. After
thawing overnight at 4 °C, the specimens from each
group were scanned using a micro-computed tomog-
raphy (CT) imaging system with a 36-μm isotropic voxel
resolution under a 60-kV scanning voltage (Skyscan1176;
BRUKER, Antwerp, Belgium).

Table 1 Primers of collagen I, OCN, and OPN used in RT-PCR in
this study

Gene Primer sequence

GAPDH Forward 5′-ATGGGGAAGGTGAAGGTCG-3′

Reverse 5′-TAAAAGCAGCCCTGGTGACC-3′

Collagen I Forward 5′-GGTTTGTTGAAGAGGCTG-3′

Reverse 5′-GATGGCCTGAAGCTCAA-3′

Osteocalcin Forward 5′-CCGGGAGGAGATCTGTGAAA-3′

Reverse 5′-CTGCCTTCTTCCACAATTTTATCC-3′

Osteopontin Forward 5′-GCCAGTTGCAGCCTTCTCA-3′

Reverse 5′-GCCATGCCCAAGAGACAAAA-3′

Fig. 1 a Gross observations of the semitendinosus tendon (black arrow) and b native anterior cruciate ligament (ACL) (black arrow). c Macroscopic
view of ACL reconstruction (arrow points to autologous semitendinosus tendon graft)
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Biomechanical testing was performed immediately
after the scan. All soft tissue except the graft was re-
moved to create a femoral–ACL graft–tibial complex.
The femur and tibia were fixed at 45° flexion in an
Instron 553A material testing system (Instron,
Norwood, MA, USA; Fig. 2a). The test was performed
by increasing the tensile load continuously at a speed
of 20 mm/min. The failure load (N) was recorded by
the load-deformation curve, and stiffness (N/mm) was
calculated from the slope of the linear part of the
load-deformation curve (Fig. 2b).

Statistical analysis
All values are expressed as means ± standard deviation,
and the statistical analysis was performed using SPSS
software (ver. 16.0; SPSS Inc., Chicago, IL, USA). Dif-
ferences between groups were detected using one-way
analysis of variance followed by Scheffe’s multiple com-
parison test. A p value <0.05 was considered significant.

Results
Identification of BMSCs
A total of 69.2 and 99.7 % of the passage 3 cultured cells
expressed CD44 and CD90, respectively, whereas only
4.82 % expressed CD45 and were identified as BMSCs
(Fig. 3). Following 3 weeks of culture in osteogenesis
induction medium followed by alizarin red staining, ob-
vious mineralised nodules were observed under the
microscope (Fig. 4a). Oil red O staining revealed many
lipid droplets (Fig. 4b), and the BMSC cytoplasm was
stained green by alcian blue after 3 weeks of chondro-
genic induction (Fig. 4c).

Transcription levels of osteogenic genes
The transcription of osteogenic genes, including collagen
I, osteocalcin, and osteopontin, was evaluated by real-

time quantitative reverse transcription–polymerase chain
reaction (RT-PCR) analysis. Collagen I, osteocalcin, and
osteopontin messenger RNA (mRNA) levels in BMSCs
increased gradually after co-culture with PRP. The levels
of the three osteogenic genes were significantly higher
than those in uninduced BMSCs at all time points (p <
0.05, Fig. 5).

Histological observations
Organised fibrous tissue and some new bone containing
chondrocytes were observed at the tendon–bone interface
in the control group 8 weeks postoperatively (Fig. 6a, d).
Aligned connective tissue, newly formed woven bone, and
cartilage were observed at the tendon–bone interface in
the PRP group (Fig. 6b, e). A more mature interface with
aligned chondrocytes was observed in the BMSC + PRP
group, but the fibrous connective tissue at the tendon–
bone interface was unclear. A more aligned and layered
cartilage zone was observed, which incorporated adjacent
bone and tendon (Fig. 6c, f ).

Micro-CT scan
The transverse, coronal, and sagittal section images of
the tibial bone tunnel were reconstructed with high-
resolution micro-CT. Newly formed mineralised tissue
was evident along the entire length of the bone tunnel
by screening slices of each sample. The control micro-
CT images showed no obvious mineralised tissue in the
tibial bone tunnels 8 weeks postoperatively (Fig. 7a1–3).
Obvious signals were detected in the bone tunnels of the
PRP (Fig. 7b1–3) and BMSC + PRP groups (Fig. 7c1–3),
indicating mineralised tissue formation at the tendon–
bone interface. A stronger signal was observed in the
BMSC + PRP group than in the PRP group, indicative of
more mineralised tissue formation.

Fig. 2 a The femoral–graft–tibial complex was firmly fixed on the Instron machine to perform the mechanical test (black arrow points to the
intra-articular graft). b Representative load-deformation curve obtained by the biomechanical test
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Biomechanical testing
The failure load (36.22 ± 8.77 N, n = 5) was significantly
greater in the BMSC + PRP group 8 weeks postopera-
tively than in the control (19.56 ± 2.45 N, n = 5; p =
0.001) and PRP groups (24.08 ± 1.16 N, n = 5; p =
0.012). No difference was observed between the control
and PRP groups (p = 0.429; Fig. 8a). No difference in
stiffness was observed among the groups (Fig. 8b)
(Additional file 1).

Discussion
This study demonstrated that the combination of PRP
and BMSCs enhanced tendon–bone healing in a rabbit
model of ACL reconstruction. The aligned and layered
cartilage zone revealed that directly inserting the tissue
resembled the histology of inserting a native ACL. More
mineralised tissue had formed, as detected by micro-CT,
and a larger failure load was observed in the BMSC +
PRP group, indicative of better osteointegration at the
tendon–bone interface. These results indicate that the
BMSC + PRP combination is a promising way to pro-
mote tendon–bone healing.
BMSCs have the potential for differentiation as multi-

potent stem cells, but this process is not completely
spontaneous. Many studies have shown that some cyto-
kines have stimulatory effects on the differentiation of

BMSCs [19–21]. In the present study, collagen I, osteo-
calcin, and osteopontin mRNA levels increased gradually
when cells were co-cultured with PRP for 14 days. Acti-
vated platelets release TGF-β, PDGF, VEGF, and epider-
mal growth factor, which promote wound healing [22].
de Mos et al. found that PRP enhanced human tendon
cell proliferation and total collagen production in an in
vitro study [23].
Tendon–bone healing is slow because the recon-

structed tendon graft in the bone tunnel is separated
from a vascular supply and the bone is lost at the injury
site. During healing, the structure and composition of
the native direct tendon–bone interface is not reformed,
but a mechanically and structurally inferior interface
forms [24]. Previous studies have demonstrated that
osteoinductive agents accelerate osteointegration to the
tendon graft, improving tendon–bone healing and the
mechanical properties [25–27]. Rodeo et al. reported a
narrower interface zone in bone morphogenetic protein-
treated specimens, indicative of better tendon–bone
healing [26]. In the present study, we found that PRP
promoted BMSC osteodifferentiation in vitro, and the
combination of the two agents promoted tendon–bone
healing in vivo.
Successful ACL reconstruction requires solid tendon–

bone healing. Direct and indirect insertion are the two

Fig. 3 Flow cytometry analysis of passage 3 cell surface markers: 69.2, 4.82, and 99.7 % positive cells for CD44 (a), CD45 (b), and CD90
(c), respectively

Fig. 4 Alizarin red (a), oil red O (b), and alcian blue staining (c) to detect the differentiating ability of bone marrow mesenchymal stem cells
(BMSCs) relative to the bone, fat, and cartilage, respectively. Scale bar, 50 μm
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types of tendon–bone insertion. Direct insertion, which
serves to transmit tensile forces, comprises four typically
distinct transition zones, of the bone, mineralised cartil-
age, fibrocartilage, and ligament. Indirect insertion in-
cludes the bone, Sharpey’s fibres (which anchor the soft
tissue to the bone), and ligament. The present study
showed that PRP and BMSCs histologically promoted
bone ingrowth into the tendon–bone interface. An in-
completely mature chondral tendon–bone interface was
observed in the BMSC + PRP group by H&E and
Russell–Movat pentachrome staining.
The walls of the bone tunnel in the PRP and BMSC +

PRP groups showed more new bone formation than
those of the control group. The newly formed bone
represents a direct bonding area between the tendon
and bone and prevents the knee instability associated
with enlarging the bone tunnel. Enlargement of the
bone tunnel at the articular end due to bone resorption
is a common problem after ACL reconstruction [28].
New bone formation in the PRP and BMSC + PRP
groups could be effective for long-term knee function
by preventing the instability associated with bone tun-
nel enlargement.

The failure load in the BMSC + PRP group was signifi-
cantly higher than that in the other two groups at
8 weeks postoperatively, but no difference was observed
between the PRP and control groups. Tendon–bone
healing after ACL reconstruction encompasses an or-
derly transition of necrosis of graft cells and ingrowth of
host cells [13]. The cell types that initiate and regulate
tendon–bone healing have not been positively identified
until now [4]. Kobayashi et al. reported that if graft
cells do not survive the first 2 weeks after ACL recon-
struction, the graft will undergo necrosis [13]. It seems
that the host cells from the surrounding bone marrow
in the bone tunnel, which contains BMSCs and other
preosteoblasts, contribute to tendon–bone interface re-
pair [13, 14]. In our study, significant differences in
mechanical properties were observed between the
BMSC + PRP and the other two groups, indicating that
the seeded cells contribute to the tendon–bone healing
process.
MSCs have become the gold standard for cellular ther-

apies in musculoskeletal diseases because of their ease of
expansion and capability of differentiating into chondro-
cytes, tenocytes, and osteocytes [29–31]. Several studies

Fig. 5 Reverse transcription–polymerase chain reaction evaluation of osteogenic gene mRNA expression. Asterisk indicates significant difference
(p < 0.05) compared with gene expression levels of BMSCs co-cultured with or without platelet-rich plasma (PRP) a collagen I; b osteocalcin
(OCN); c osteopontin (OPN)

Fig. 6 Histological observations of the tendon–bone interface in the control (a, d), PRP (b, e), and BMSC + PRP groups (c, f) by haematoxylin and
eosin (H&E) (a–c) and Russell–Movat pentachrome staining (d–f). Magnification, ×100; scale bar, 100 μm. t tendon graft; b bone; if interface
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have explored the effects of tendon–bone healing with
MSCs. Ouyang et al. applied BMSCs at the tendon–bone
interface when fixing the hallucis longus tendon in a cal-
caneal bone tunnel. Only 50 % of the tendon–bone
interface contained fibrocartilage, although the BMSC
group promoted collagen II staining [32]. Ju et al. ex-
plored the effect and mechanism of the implantation of
BMSCs on tendon–bone healing in rats. The MSC
group had a higher percentage of oblique fibres relative

to the total interface area compared with controls [33].
Gulotta et al. reported that the addition of BMSCs to
the tendon–bone interface did not improve the compos-
ition, structure, or strength of the tendon–bone attach-
ment site [34]. It is possible that the tendon–bone
interface lacks the molecular and/or cellular signals ne-
cessary for inducing the transplanted cells to appropriate
differentiation, implying that MSC-based strategies
should be combined with appropriate differentiation and

Fig. 7 Representative transverse (a1, b1, and c1), coronal (a2, b2, and c2), and sagittal (A3, b3, and c3) section micro-computed tomography
images in the three groups. No obvious mineralised tissue had formed in the tibial bone tunnels in the control group (a1–3). Clear mineralised
tissue had formed at the tendon–bone interface in the PRP (b1–3) and BMSC + PRP groups (c1–3). The red arrows point to the newly formed
mineralized tissue around the wall of the tibial bone tunnel

Fig. 8 Biomechanical test results: failure load (a) and stiffness (b). *p < 0.05 vs. control group; #p < 0.05 vs. the PRP group
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growth factors. In the present study, BMSCs serve as the
material for regeneration, while PRP serves as the im-
petus to promote tendon–bone healing.
A limitation of this study was that the BMSCs were

not labelled and tracked. Fan et al. labelled BMSCs with
green fluorescence protein (GFP) to examine cell viabil-
ity on scaffolds implanted into a rabbit knee joint for
ACL reconstruction. Their results revealed GFP-positive
scaffolds 4 weeks postoperatively, indicating that the
BMSCs were viable [35]. Further studies are required to
precisely track the fate of implanted BMSCs. Another
limitation of this study was that the failure load was
tested only under a static condition at 45° of flexion.
The biomechanical test was limited by our sample size
and our Instron machine, which only tested tensile
strength in a straight line.

Conclusions
PRP significantly stimulated osteogenic differentiation
in BMSCs. The combination of PRP and BMSCs en-
hanced tendon–bone healing in a rabbit model of ACL
reconstruction, demonstrating its potential for clinical
use.

Additional file

Additional file 1: Results of biomechanical test. (PDF 94 kb)
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