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Abstract

BMP-2 in gene expression and mineralization of bone.

quantify mineralization.

associated with growth.

stimulating mineralization.

Introduction: The difficulty in re-growing and mineralizing new bone after severe fracture can result in loss of
ambulation or limb. Here we describe the sequential roles of FGF-2 in inducing gene expression, cell growth and

Materials and methods: The regulation of gene expression was determined using real-time RTPCR (gRTPCR) and
cell proliferation was measured by thymidine incorporation or fluorescent analysis of DNA content in MC3T3E1
osteoblast-like cells. Photomicroscopy was used to identify newly mineralized tissue and fluorescence was used to

Results: Fibroblast growth factor-2 (FGF-2) had the greatest ability to induce proliferation after 24 hours of
treatment when compared to transforming growth factor beta (TGFf, insulin-like growth factor-1 (IGF-1), bone
morphogenic protein (BMP-2), platelet derived growth factor (PDGF) or prostaglandin E, (PGE,). We found that
FGF-2 caused the most significant induction of expression of early growth response-1 (egr-1), fgf-2, cyclo-oxygenase-
2 (cox-2), tgf} and matrix metalloproteinase-3 (mmp-3) associated with proliferation and expression of angiogenic
genes like vascular endothelial growth factor A (vegfA) and its receptor vegfrl. We found that FGF-2 significantly
reduced gene expression associated with mineralization, e.g. collagen type-1 (collal), fibronectin (fn), osteocalcin (oc),
IGF-1, noggin, bone morphogenic protein (bmp-2) and alkaline phosphatase (alp). In contrast, BMP-2 significantly
stimulated expression of the mineralization associated genes but had little or no effect on gene expression

Conclusions: The ability of FGF-2 to re-program a mineralizing gene expression profile to one of proliferation
suggests that FGF-2 plays a critical role of osteoblast growth in early fracture repair while BMP-2 is instrumental in

Introduction

The mechanisms that regulate bone growth and minera-
lization remain poorly understood. The cellular events
involved in bone formation include chemotaxis of osteo-
blast precursors, growth factor (GF) production, prolif-
eration of committed osteoblast precursors, and the
differentiation (mineralization) of osteoblasts. Bone for-
mation requires expression of structural proteins such
as collagen type I, osteocalcin, noggin and runx2 during
mineralization [1]. Numerous studies suggest that a
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variety of growth factors such as FGF-2, TGEp, IGF-1,
PDGF and PGE, act as autocrine and paracrine hor-
mones to regulate bone cell proliferation [2]. FGF-2 is
an important modulator of bone formation in vitro and
in vivo [3,4]. FGF-2 is tightly bound to the bone matrix
and can be extracted as a biologically active GF [5] and
is thought to play a major role in wound healing [6,7].
To evaluate the physiological activity of FGF-2 and
other growth factors, we studied their relative ability to
influence proliferation of osteoblasts at a site of injury
in a mineralized culture. MC3T3-E1 is a cloned mouse
osteoblast-like cell line that retains synthetic functions
of bone. When treated with differentiation media, these
cultured osteoblasts have the ability to differentiate,
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including synthesis of alkaline phosphatase [8], type I
collagen [9], osteocalcin [10,11] and mineralized matrix
containing hydroxyapatite crystals [12].

We have previously reported that FGF-2 is induced by
mechanical stress [13,14] and causes proliferation after
mechanical stress. FGF-2 is an immediate-early gene
that is regulated by both PKA and MAPK signal trans-
duction pathways [15]. Here we report that FGF-2
induces expression of growth-related genes and down-
regulates genes responsible for differentiation and
mineralization. In addition, BMP-2 is considerably more
effective than FGF-2 in inducing new mineralization.

Materials and methods

Materials

We obtained GFs from Amgen, Thousand Oaks, CA.
FGF-2 and IGF-1 from R & D Systems, Minneapolis,
MN. TGEB, PDGF and dmPGE, are from Cayman Che-
mical, Ann Arbor, Michigan. Cell culture supplies
(o MEM, fetal calf serum, trypsin and antibiotics) were
obtained through the tissue culture facility at the
University of California, San Francisco. Cell culture
dishes were purchased from Corning, Corning, New
York. Rhodamine-phalloidin is from Invitrogen, Carls-
bad, California. Tritiated thymidine and 35 S methionine
are from Amersham, Arlington Heights, IL. All other
materials came from standard laboratory suppliers.
MC3TS3E1 osteoblast-like cells, a cloned cell line, estab-
lished by Kodama [8,12] were used in this study at early
passage number.

Methods

We maintained cloned MC3T3-E1 osteoblast-like cells in
normal media (NM) consisting of alpha MEM medium
with 10% fetal calf serum (FCS), 1% antibiotic solution
and 1% glutamine solution and subcultured the cells
every 3 to 4 days. The cells were subcultured by incubat-
ing with trypsin for five minutes and resuspending at a
concentration of 3 x 105 cells/ml. For experiments, we
grew the cells in the NM above, using multi-well plates.
After three days, the cells reach confluence and minerali-
zation medium (MM) was added. MM is alpha MEM
medium with 5% fetal calf serum (FCS), 1% antibiotic
solution and 1% glutamine solution supplemented with
ascorbic acid (50 pg/ml) and B-glycerol phosphate
(10 mM) to support mineralization. The cultures were
then incubated for 1-2 more days for mineralization stu-
dies. We used at least triplicate independent biological
samples in multiple experiments for data collection.

Protein Assay

Protein concentration was determined by Bio-Rad DC
protein assay (Bio-Rad, CA) according to manufacturer’s
protocol.
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Microscopy

At the conclusion of the 24 or 48 hour incubation, the
coverslip was removed. The specimen was rinsed five
times in room temperature phosphate buffered saline
(PBS) and fixed. We then visualized the mineralizing
cells with 2% Alizarin Red. After rinsing in distilled
water and air drying the samples, we mounted the cov-
erslips on microscope slides using Fluoromount and
examined and photographed the cells on a Zeiss Axios-
kop using 20x.

Tritiated thymidine incorporation into DNA

At the conclusion of the 24 hour incubation, the culture
medium was removed and the cells were incubated for
15 minutes at 37°C in 1 ml PBS containing tritiated thy-
midine (4 uCi/ml) as described previously [16]. Follow-
ing this incubation, the PBS was removed and the cells
were washed 3 times with ice cold trichloroacetic acid
(TCA) followed by ice cold ethanol and allowed to air
dry. Then 1 ml of sarkosyl lysing buffer was added to
each well; all the cells were solubilized after 30 minutes.
Finally, after mixing the resulting solution with a pip-
ette, radioactivity was counted in a scintillation counter
and protein content was measured. The data was calcu-
lated and expressed as disintegrations per minute
(DPM) per microgram protein.

Alizarin Red visualization of mineralization

Alizarin Red (2%) stained cells were incubated with 10%
acetic acid for 30 minutes to release bound Alizarin Red
into solution. The solution was neutralized with 10%
ammonium hydroxide and the absorbance of Alizarin
Red was measured at 450 nm using a microplate reader.
Data is expressed in absolute amounts according to a
standard curve.

RNA Isolation

RNA were isolated through the use of the RNeasy™-
Mini kit (QIAGEN, Valencia, CA) or TriReagent™
according to the manufacturer’s protocol. For RNeasy™
Mini kit RNA isolation, cells were seeded in 6-well
plates with o MEM media supplemented with 10% FCS,
then downregulated and activated as indicated in the
figure legends. Cells were lysed using 350 pl of buffer
RLT (supplied in kit) containing 2-mercaptoethanol
(Biorad, Hercules, CA). The lysate was then placed into
QIAshredder homogenizer (QIAGEN, Valencia, CA)
and centrifuged at 20,000 rpm for 2 minutes. 350 pl of
70% ethanol was added to the flow through, mixed, and
centrifuged in the RNeasy™Mini column (supplied in
kit) for 15 s at 20,000 rpm. Flow through was discarded
and the column was washed with 700 pl of buffer RW1
(supplied in kit) for 15 s at 20,000 rpm. Two additional
washes were performed with 500 ul of buffer RPE
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(supplied in kit) at 20,000 rpm for 15 s and 2 minutes,
respectively. The flow through was discarded and the
column placed in a sterile 1.5 ml collection tube.
Depending on the expected yield, 20-50 ul RNase-free
water is pipetted into the column and centrifuged for
1 minute at 20,000 rpm. The samples are then stored at
-80°C until further analysis.

Reverse Transcription (RT)

1.5 pg of RNA was added to 30 ul reverse transcriptase
(RT) reaction buffer containing 5 mM MgCl,, 10 mM
Tris-HCI (pH 8.3), 50 mM KCl, 1 mM dNTPs, 2.5 uyM
oligo d(T) primer, 2.5 U/ul of MuLV, and 1 U/ul of
RNase inhibitor. The RT reaction was incubated at
room temperature for 10 min, 42°C for 30 min, inacti-
vated at 99°C for 5 min, and cooled at 5°C for 5 min.

Real-time Quantitative RT-PCR Reaction (QRTPCR)

2 pl of cDNA from the RT reaction was added to 20 pl
real-time quantitative polymerase chain reaction (qPCR)
mixture containing 10 pl of 2x SYBR® Green PCR Mas-
ter Mix (Applied Biosystems, Foster City, CA) and
12 pmol oligonucleotide primers. PCRs were carried out
in a Bio-Rad MyiQ Single-Color Real-Time PCR Detec-
tion System (Bio-Rad, Hercules, CA). The thermal pro-
file was 50°C for 2 min, 95°C for 10 min to activate the
Taq polymerase, followed by 50 amplification cycles,
consisting of denaturation at 95°C for 1 min 40 s,
annealing at 63°C for 1 min 10 s and elongation at 72°C
for 1 min 40 s. Fluorescence was measured and used for
quantitative purposes. At the end of the amplification
period, melting curve analysis was performed to confirm
the specificity of the amplicon. RNA samples were nor-
malized to cyclophilin (CPHI) internal standard. Relative
quantification of gene expression was calculated by
using 2»(Ct gene T - Ct CPHI T)-(Ct gene 0 hr - Ct CPHI O hr)
equation, where “C; gene T” represents the calculated
threshold cycle (C,) of a time point of each sample
other than 0 hr, or each treatment other than control.
Relative gene absolute abundance was calculated using
2 sup>(Ct gene T - Ct CPHI T) as previously described
[17] allows us to compare the abundance of the gene
between other genes and experiments. The resulting
numbers were then multiplied by 10,000 for better gra-
phical presentation. Primer sequence information was
previously published [18-22]. All data derived using
qRTPCR was from multiple experiments with at least
triplicate independent biological samples.

Results

Growth factor effect on cell proliferation DNA synthesis
As seen in Table 1, in the absence of any added com-
pounds there were small and unremarkable changes in
DNA synthesis with IGF-1 and PDGF; in contrast,

Page 3 of 8

Table 1 Effect of growth factors on protein synthesis in
wounded mineralized osteoblasts

Treatment Thymidine incorporation DPM x 10°/ug protein

con 376 £29

IGF-1 423 + 42

FGF-2 1143 £ 11

TGFB 652 + 12

PDGF 398+ 72
BMP-2 415+ 56

PGE2 84.1 = 23.1

Representative experiment showing the effects of IGF-1 (20 ng/ml), FGF-2
(2.0 ng/ml), TGFB (2 ng/ml), PDGF (3 ng/ml), BMP-2 (100 ng), PGE; (2 ug/ml)
on proliferation/mg protein of MC3T3-E1 osteoblasts after 24 hours of
treatment (n = 4).

FGF-2, TGFP and PGE2 significantly enhanced thymi-
dine incorporation within 24 hours of treatment. TGFf
stimulated thymidine incorporation more than 2 fold
while FGF-2 and PGE2 increased DNA synthesis more
than 4.5 and 3.3 fold respectively.

Regulation of FGF-2 induced gene expression

Using qRTPCR, we found that FGF-2 dramatically
induced egf-1, fgf-2, cox-2, tgfB, mmp3, vegfA and vegfrl
over a 24 hour period each displaying a different sequen-
tial temporal pattern of gene induction (Figure 1). VegfA
and vegfrl are associated with angiogenesis while mmp3,
is associated with increased migration. TgfB, fof-2, egr-1
and cox-2 are key genes in regulation of osteoblast
proliferation.

Interestingly, we found that FGF-2 also significantly
decreased expression of other genes associated with
mineralization including collal, fu, bmp-2, oc, run-x,
and noggin. IGF-1, a known differentiation factor, was
significantly decreased by FGF-2 treatment. (Figure 2).

Relative abundance of genes regulated

by FGF-2 and BMP-2

Since FGF-2 increased growth associated genes, we used
BMP-2, a known promoter of mineralization, to study
relative abundance of gene expression in mineralizing
cells after 24 hours of treatment. As seen in Table 2, we
found that BMP-2 treatment caused significant increases
in genes associated with mineralization including colal,
fn, noggin and oc. Moreover, BMP-2 treatment caused
little or no changes in expression of genes associated
with angiogenesis and migration e.g. VEGF and MMP3.
When compared with relative gene abundance of FGF-2
treated cells (Figure 3) we found that in general, BMP-2
maintained the mineralizing RNA profile of igf-1, alp,
and bmp-2 and significantly increased expression of
other genes associated with mineralization like collal,
fn, ilgf-1, noggin and oc. Fgf-2, on the other hand, signif-
icantly suppressed expression of mineralizing genes.



Hughes-Fulford and Li Journal of Orthopaedic Surgery and Research 2011, 6:8

http://www.josr-online.com/content/6/1/8

Page 4 of 8

cox-2 f-2
40 15 fg
@ o
1% ]
£ 0
220 £
3 2 5
& I

0 30min 3hr 6hr 18hr 24hr Q0 30min 3hr 6hr 18hr 24hr

6 tgfp 15 mmp3
@
2 3
E g
= £
s 2 2
v I

0 30min 3hr 6hr 18hr 24hr 0 30min 3hr 6hr 18hr 24hr

vegfr1 (FLT1)
vegfA 52.76

&
[=]

Fold Increase
N A O @

Fold Increase
%)
o

0 30min 3hr 6hr 18hr 24hr 0 30min 3hr 6hr 18hr 24hr

25 - egr-1

Fold Increase

0 30min 3hr 6hr 18hr 24hr

Figure 1 gRTPCR analysis of gene induction of proliferation
and angiogenesis; qRTPCR analysis of gene reduction of genes
over 24 hours of treatment with FGF-2 shows a significant increase
in genes associated with proliferation and angiogenesis. Cultures
were cultured and harvested for RNA as described in Materials and
Methods. Each bar represents mean + SD triplicate independent
biological samples each time point corrected to cyclophilin. (*p <
0.05; **p < 0.01 with two-tail student t-test compared to 0 hour of
each gene).

Relative mineralization of FGF-2 and BMP-2 treated cells
As seen in Figure 4 and Table 3, BMP-2 treatment
enhances mineralization of the cells as shown by uptake
and presence of Alizarin Red after cultures were grown
to confluence and then treated with BMP-2 or FGF-2
for 24 to 48 hours. Cells were then washed and stained
with 2% Alizarin Red and results determined using
photography or fluorescence analysis at 48 hours of
treatment.

Discussion

Bone formation during injury repair is a multi-step series
of events modulated by an integrated cascade of gene
expression that initially supports the proliferation stage.
The later mineralization stage is associated with the
sequential expression of genes that support biosynthesis,
organization and mineralization of the bone extracellular
matrix. Mineralization requires expression of structural
proteins such as collagen type I, osteocalcin, as well as
noggin and runx2 which aid in mineralization [1].
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Figure 2 qRTPCR analysis of FGF-2 regulated genes associated
with mineralization; gRTPCR analysis of gene reduction of genes
over a 24 hours of treatment with FGF-2 shows a marked reduction
in genes associated with mineralization. Cultures were cultured and
harvested for RNA as described in Materials and Methods. Each bar
represents mean = SD triplicate independent biological samples at
each time point corrected to cyclophilin. (*p < 0.05; **p < 0.01 with

two-tail student t-test compare to 0 hour of each gene.).

Transcriptional control defines the regulatory events
necessary for both stages of bone formation [23]. There
is a general consensus that during injury GFs are released
from the wounded bone matrix and promote healing
[24]. In this study, we have documented the relative effi-
ciency of bone growth factors FGF-2, TGFj, and PGE2
markedly enhanced the synthesis of the total protein con-
tent of the dishes (Table 1)

Rate of proliferation was dependent on the specific
GF. FGF-2, TGFB and PGE, significantly promote
growth, with FGF-2 having the highest efficacy and the
lowest dose. FGF-2 produced a distinct pattern of gene
expression. FGF-2 down regulates genes associated with
mineralization while it induces genes associated with
proliferation and angiogenesis, a finding supported by
observations of others [25]. Since cox-2 had a 27-fold
induction by FGF-2, we examined the effect of the
COX-2 product, PGE, on proliferation. We found that
PGE, increased DNA synthesis by 3.3 fold significantly
higher than TGEp, IGF-1, PDGF, suggesting that its
induction by FGF-2 helps complete the FGF-2 full
induction of osteoblast growth. These data also suggest
that FGF-2 may be an important regulator of migration,
angiogenesis and proliferation during the first stage of
healing a critical defect since it induces mmp3, vegfa
and vegfrl expression. In data not shown, FGF-2 had
no effect on expression of mmp-1. Moreover, FGF-2
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Table 2 Relative abundance of gene expression in FGF-2 and BMP-2 treated cells

Non-treated

FGF-2 treated

BMP-2 treated FGF-2 vs BMP-2

Gene Average SD Average sD Average SD p-value
Collagen Type | 85,081.73 2,5316.39 *%678.21 35827 *170,243.43 24/493.77 0.0003
Fibronectin 55,827.93 1,2119.18 *28,432.19 119592 #%¥239,750.67 23,464.19 0.0001
IGF1 3,249.41 689.70 **50.65 1330 4,193.34 739.19 0.0006
RUNX2 349.09 4063 **¥674.95 63.04 1,043.65 783.29 ns.
VEGFA 109.49 38.86 **5,132.66 755.22 537.13 379.66 0.0007
TGFB 93.08 10.55 *%¥245.40 4193 *185.20 3834 ns.
ALP 58.30 34.81 13.39 11.68 91.77 23.15 0.0064
ocC 16.20 3.19 #%1.38 0.65 *34.04 6.11 0.0008
Noggin 7.11 277 *1.61 049 241 1.76 ns.
BMP-2 0.40 0.12 **0.06 0.01 0.38 0.05 0.0004
MMP3 0.03 0.03 **4.04 097 0.12 0.14 0.0023

This table shows the relative abundance of gene expression in mineralizing MC3T3-E1 cells after 24 hours of treatment with FGF-2 (5 ng) or BMP-2 (100 ng).
Total RNA was harvested 24 hours after the addition using Qiagen RNeasy kit. A two-step RT-qPCR was preformed. Each data point represents the mean + SD of
three biological independent samples. *p < 0.05; **p < 0.01; ***p < 0.0001 against 0 hour control samples with 2 tail student t test.

induced its own message as well as TGEp, but signifi-
cantly reduced expression of BMP-2, osteocalcin, nog-
gin, runx2, collagen type I and IGF-1, genes which are
associated with mineralization.

As described by others, bone formation is divided into
two phases, proliferation and mineralization [2,26-29].
These two stages are the result of a specific sequential reg-
ulation of gene expression from the early phase of osteo-
blast proliferation to the final steps of mineralization.
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Figure 3 FGF-2 and BMP-2, the yin and yang of mineralization:
Contrast of effect of 24 hours of treatment with FGF-2 or BMP-
2 on fold increase in abundance of mineralization-related gene
expression. Mineralizing MC3T3-E1 cells were prepared as
described in Materials and Methods. They were then treated with
either FGF-2 or BMP-2 for 24 hours at which time RNA was
collected and analyzed for relative abundance using gRTPCR. Each
bar represents mean + SD triplicate independent biological samples
each time point corrected to cyclophilin. (*p < 0.05; **p < 0.01 with
two-tail student t-test compare to 0 hour of each gene.) *<0.05;
**<0.01; ***<0.0001.

Once the cells start mineralizing, cell division and DNA
synthesis dramatically slow down and eventually cease.
When an injury occurs in mineralized tissue, GFs like
FGF-2 are released and start a new proliferation stage to
heal the defect. The increase in cell replication in a miner-
alizing cell likely represents a de-differentiation from the
mineralizing phase to the growing phase, and increases
expression of GFs most likely induce proliferation. Treat-
ment of the mineralized defect model with FGF-2 resulted
in gene expression that corresponds to de-differentiation
(e.g. significant increases in growth related genes egf-1, fgf-2,
cox-2, TGFp, vegfA, vegfr and mmp3 and down-regulation
of mineralizing related genes). Vegf and vegfrl are primary
regulators of angiogenesis, while MMP3 is thought to
play a major role on cell behaviors such as proliferation
and migration [30] which may explain the ability of the
FGEF-2 to enable the cultured cells to fill the defect void
efficiently. The fact that FGF-2 induces its own expres-
sion suggests that after injury, the FGF-2 released from
the wound matrix could promote it's own expression,
making it a feed-forward loop.

Although Figures 1 and 2 demonstrate the relative
FGF-2 regulation and sequential expression of growth,
angiogenic and chemotactic genes and depresses expres-
sion of mineralization-related genes, these figures do not
tell us the relative abundance of the genes. In Table 2,
we determined the relative abundance of genes in three
groups after 24 hours; with or without treatment with
FGF-2 or BMP-2. FGF-2 caused a significant increase in
abundance of genes associated with proliferation, che-
motaxis and angiogenesis. Moreover, the addition of
FGEF-2 to the mineralized wounded cultures caused a
marked decrease in abundance of collal as well as fn,
igf-1, noggin, oc, bmp-2 and alp message. In the early
stages of mineralization, the major protein (greater than
20%) synthesized by the osteoblast is collagen, however
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5% Normal Media

5% Mineralizing Media

5% Normal Media + 5ng/ml FGF-2

5% Mineralizing Media + 5ng/ml FGF-2

5% Normal Media + 50ng/ml| BMP-2

5% Mineralizing Media + 50ng/m| BMP-2

Figure 4 Alizarin Staining of Mineralizing Osteoblast cells. MC3T3-E1 osteoblasts were seeded at 3000 cells/well in 96 well CELLBIND® plates
in normal medium. Once cells were confluent, media was changed to 5% NM or 5% mineralizing media with or without 5 ng/ml FGF-2 or 50
ng/ml BMP-2. Two days after treatment, media was removed and cells were fixed in 10% formalin and stored at 4°C until subsequent analysis.
Cells were stained for calcium with 2% Alizarin Red for 10 minutes and visualized under 20x objectives for photography. Many areas of
mineralization, as seen by bright red staining, were present in the cells treated with 5% MM plus 50 ng/ml BMP-2 (FIG. 11). Little to no

mineralization was seen with other 5 treatments.

collagen is not a major component of the proliferating
cell, suggesting that FGF-2 stimulates proliferation partly
through its ability to drastically reduce the relative
abundance of a majority of the mineralizing-associated
genes. The dramatic reduction of IGF-1 by FGF-2 sug-
gests a role for IGF-1 in mineralization, this is in agree-
ment with findings of others that demonstrated IGF-1
to be a major factor in bone mineralization [31-33]
using the IGF-1 null mouse. In contrast, in cells treated
with BMP-2, the relative abundance of collal, fu, oc,
and tgfB were dramatically induced while BMP-2 had no

Table 3 Mineralization of cells with BMP-2

Treatment Relative abundance
NM 56+ 1.7

NM + 5 ng/ml FGF-2 53 %1

NM + 50 ng/ml BMP-2 162 + 4.2

MM 9.1 +20
MM + 5 ng/ml FGF-2 49 1.1
MM + 50 ng/ml BMP-2 552127

The Alizarin Red (2%) stained cells were incubated with 10% acetic acid for
30 minutes to release bound Alizarin Red into solution. The solution was
neutralized with 10% ammonium hydroxide and the absorbance of Alizarin
Red was measured at 450 nm using a microplate reader (n = 6). Data is
expressed at in absolute amounts according to a standard curve.

significant effect on genes related to growth, angiogen-
esis or chemotaxis. These data suggest that BMP-2 may
be the best GF to use for the mineralization stage but
not the proliferation stage of bone formation. This find-
ing may help explain studies by others [34] who discov-
ered that a delayed administration of BMP-2 to a
fracture resulted in better repair of critical size defects.
It is likely that the delay of BMP-2 treatment allowed a
longer period of proliferation prior to BMP-2 promotion
of mineralization. Our findings in Table 2, 3 and Figure 3
support the hypothesis that FGF-2 and BMP-2 are
required at different stages of bone repair.

Conclusions

These data demonstrate the de-differentiation (reduction
of mineralization genes) effect of FGF-2 likely plays a
key role in osteoblast proliferation, the first stage of
bone formation. Some have expressed concern that
ex-vivo proliferation of human stem cells by a growth fac-
tor like FGF-2 might change the osteogenic characteristics
of a pre-osteoblast; however others have shown that
expansion of the population does not affect later osteo-
genic potential [35] of stem cells. Therefore, an expansion
of osteoblast cells by FGF-2 might be an excellent strategy
for first stage re-population of a critical defect since FGF-2
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has the needed efficacy for promoting proliferation. These
data also suggest that the final stage of bone repair is best
accomplished with BMP-2 due to its promotion of differ-
entiation and mineralization.
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