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Abstract
Background  Although short-segment posterior spinal fixation (SSPSF) has shown promising clinical outcomes 
in thoracolumbar burst fractures, the treatment may be prone to a relatively high failure rate. This study aimed to 
assess the effectiveness of machine learning models (MLMs) in predicting factors associated with treatment failure in 
thoracolumbar burst fractures treated with SSPSF.

Methods  A retrospective review of 332 consecutive patients with traumatic thoracolumbar burst fractures who 
underwent SSPSF at our institution between May 2016 and May 2023 was conducted. Patients were categorized 
into two groups based on treatment outcome (failure or non-failure). Potential risk factors for treatment failure were 
compared between the groups. Four MLMs, including random forest (RF), logistic regression (LR), support vector 
machine (SVM), and k-nearest neighborhood (k-NN), were employed to predict treatment failure. Additionally, LR and 
RF models were used to assess factors associated with treatment failure.

Results  Of the 332 included patients, 61.4% were male (n = 204), and treatment failure was observed in 44 
patients (13.3%). Logistic regression analysis identified Load Sharing Classification (LSC) score, lack of index 
level instrumentation, and interpedicular distance (IPD) as factors associated with treatment failure (P < 0.05). All 
models demonstrated satisfactory performance. RF exhibited the highest accuracy in predicting treatment failure 
(accuracy = 0.948), followed by SVM (0.933), k-NN (0.927), and LR (0.917). Moreover, the RF model outperformed other 
models in terms of sensitivity and specificity (sensitivity = 0.863, specificity = 0.959). The area under the curve (AUC) for 
RF, LR, SVM, and k-NN was 0.911, 0.823, 0.844, and 0.877, respectively.

Conclusions  This study demonstrated the utility of machine learning models in predicting treatment failure in 
thoracolumbar burst fractures treated with SSPSF. The findings support the potential of MLMs to predict treatment 
failure in this patient population, offering valuable prognostic information for early intervention and cost savings.

Keywords  Thoracolumbar burst fractures, Short segment posterior spinal fixation, Failure of treatment, Machine 
learning models, Load sharing classification
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Background
Thoracolumbar fractures are frequently occurring inju-
ries to the spine [1, 2], with burst fractures—impacting 
both the anterior and mid columns of the spine, per the 
Denis three-column classification—constituting about 
20% of these fractures [3, 4]. Managing these fractures 
has sparked significant debate [5–7], with various studies 
proposing different approaches, including conservative 
treatment, anterior surgery, posterior surgery, or a com-
bination of both [7, 8].

Several studies have shown positive outcomes for 
short-segment posterior spinal fixation (involving instru-
mentation one level above and one level below the frac-
tured area) in carefully selected cases [8, 9]. Restricting 
the number of instrumented levels offers advantages such 
as reducing the risk of adjacent segment disease and limi-
tations in range of motion [5].

Despite the favorable outcomes linked to short-seg-
ment posterior spinal fixation in thoracolumbar frac-
tures, there is a notable incidence of treatment failure, 
with reported implant failure rates ranging from 9 to 54% 
for this approach [1, 8]. Factors contributing to treatment 
failure may include the absence of anterior support and 
biomechanical failure due to inadequate instrumentation 
[2, 7].

Nonetheless, despite these considerations, short-
segment posterior spinal fixation remains the preferred 
choice for the majority of thoracolumbar fractures due to 
its favorable clinical results.

Machine learning models (MLMs) have emerged as a 
novel approach for assessing the impact of various inde-
pendent variables. Traditional MLMs conduct com-
putations to uncover patterns and relationships within 
specific data sets, excelling at generating algorithms 
without relying on equations, thus enabling predictions 
based on adaptable relationships between data points 
[10]. Recently, MLMs have found application in biostatis-
tics and medicine for categorizing and forecasting patient 
outcomes [11, 12]. Despite the potential of improved 
performance over traditional statistical modeling in han-
dling large data sets, there is limited published research 
on predicting factors associated with treatment failure in 
thoracolumbar burst fractures treated with SSPSF. The 
current study aims to evaluate the effectiveness of MLMs 
in predicting these factors.

Methods
We conducted a retrospective evaluation of 332 consecu-
tive patients who underwent short segment posterior 
spinal fixation (SSPSF) for single-level traumatic thoraco-
lumbar burst fractures at our center between May 2016 
and May 2023. Patients with pathologic/osteoporotic 
fractures, a history of previous surgery, or multiple ver-
tebral fractures were excluded from the study. Approval 

for this study was obtained from the Scientific Research 
Board of the Kermanshah University of Medical Sciences, 
and all patients provided informed written consent 
before enrollment.

Upon admission to the emergency department, all 
patients underwent a thorough physical examination, and 
the intensity of back pain was assessed using the visual 
analogue scale (VAS). Imaging studies, including antero-
posterior and lateral thoracolumbar radiography, thora-
columbar CT scans, T1- and T2-weighted MRI images, 
and short-tau inversion-recovery (STIR) sequences, were 
performed for all patients to evaluate the integrity of the 
posterior ligamentous complex (PLC).

The severity of injury was calculated using the Tho-
racolumbar Injury Classification and Severity Score 
(TLICS), with cases scoring more than 4 being consid-
ered candidates for surgery. Additionally, the Load Shar-
ing Classification (LSC) was calculated for each patient, 
considering factors such as vertebral body comminution, 
kyphosis correction after surgery, and collapse of the ver-
tebral body in the sagittal plane.

We also assessed various radiological parameters, 
including the Cobb angle, percentage of anterior height 
compression (PAHC), interpedicular distance (IPD), 
vertebral body compression rate (VBCR), and canal 
compromise.

The Cobb angle was determined by measuring the 
angle formed between the two tangents of the upper and 
lower endplates of the vertebrae above and below the 
fracture [13].

Canal compromise was assessed by calculating the ratio 
of the spinal canal diameter at the index level to the aver-
age of the spinal canal diameter at the vertebrae above 
and below the fractured vertebra [14].

The interpedicular distance (IPD) was evaluated by 
comparing the distance between the pedicles of the index 
vertebrae with the distance between the pedicles of the 
adjacent vertebrae above and below the fracture.

VBCR (Vertebral Body Compression Ratio) was com-
puted as the ratio of the anterior vertebral height of the 
fractured vertebra to the posterior vertebral height of the 
fractured vertebra, multiplied by 100%. PAHC (Percent-
age Anterior Height Compression) was calculated as the 
anterior vertebral height of the fractured vertebra divided 
by the average of the anterior vertebral height of the ver-
tebra above and below the fracture, multiplied by 100% 
[15, 16].

The failure of treatment was defined as the presence 
of instrument failure and/or progressive kyphosis dur-
ing the follow-up period. Patients were categorized into 
two groups (failure of treatment and non-failure of treat-
ment), and potential risk factors for treatment failure 
were compared between these groups.
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Statistical analysis
We utilized SPSS 23 software (SPSS Inc., Chicago, 
Illinois) for data analysis. The data was presented as 
mean ± standard deviation. To compare continuous and 
categorical variables between the failure of treatment 
and non-failure of treatment groups, we employed the 
Student’s t-test and the Chi-square test, respectively. 
Additionally, a binary logistic regression analysis was 
conducted to evaluate factors associated with treatment 
failure. The significance level for all analytical tests was 
set at < 0.05.

Model development
In this study, we employed four machine learning mod-
els, namely random forest (RF), logistic regression (LR), 
support vector machine (SVM), and k-nearest neighbor-
hood (k-NN), to predict failure of treatment in thoraco-
lumbar burst fractures treated with SSPSF. Additionally, 
LR and RF models were utilized to assess factors associ-
ated with the failure of treatment. Each model underwent 
training before evaluation. The dataset was divided into 
two sets – a training set and a test set – at an 80:20 ratio. 
The training set was utilized to fit the models, while the 
test set was used to evaluate the models’ performance. 
Feature selection was based on significance in univari-
ate analysis, with features exhibiting significance in the 
univariate analysis considered as input for the machine 
learning methods.

Decision tree (DT) and random forest (RF) models
A decision tree (DT) is a tree-like structure used to make 
decisions based on presented data, with the root node 
representing the question to be addressed. Each node is 
linked via branches to subsequent child nodes by deter-
mining the best-split feature obtained by the split cri-
terion. The binary DT separates each parent node into 
two subsets (child nodes), with binary divisions con-
tinuing until all observations are classified, leading to a 
leaf (terminal node) or outcome. Random forest (RF) is 
a machine learning ensemble consisting of several DTs. 
Each tree independently predicts the outcome and votes 
for the corresponding class. RF assigns the outcome to 
the class with the most votes, relying on a consensus of 
multiple trees to make more accurate predictions through 
its ability to capture complex relationships. In this study, 
500 DTs were used to create the RF model, known for its 
capacity to manage intricate data and alleviate overfitting 
in classification and regression. The process of develop-
ing RF is well illustrated in existing literature [17].

Logistic regression (LR)
Logistic regression (LR) is a widely used predictive 
model for making clinical decisions and is commonly 
employed in the classification of binary outcomes. The 

LR algorithm creates a sigmoid curve to represent the 
relationship between inputs and an outcome, mapping 
inputs to probabilities (between 0 and 1) that describe 
the likelihood of belonging to one of two classes. By using 
the logistic regression model, calculating the probability 
of each data point belonging to either outcome is easily 
attainable. After determining the probability of each per-
son belonging to each class, each person is assigned to 
the group with the highest probability.

Support vector machine (SVM)
The support vector machine (SVM) is a machine-learning 
algorithm used for both regression and classification, and 
it finds applications in chemometrics, bioinformatics, 
and biometrics [12]. Its core principle involves creating 
an optimal decision boundary, represented as a line, to 
separate data points and minimize error. In a two-dimen-
sional plane, each dimension corresponds to an attribute 
or feature, while each observation is depicted as a data 
point. The algorithm aims to create a hyperplane, or best 
line, that effectively separates one group of points from 
another in a linear fashion. When the data is linearly 
separable, hyperplanes with maximum margins between 
one group of points and the hyperplane are better suited 
for making accurate predictions [18]. In cases where the 
data is not linearly separable, a kernel function is used to 
map the data to a higher-dimensional space, allowing lin-
ear separation without altering the original data. In this 
study, the radial basis function (RBF) kernel function, 
known for its high generalizability, was employed [19, 
20].

K-Nearest neighbors (K-NN)
The k-nearest neighbors (k-NN) is a straightforward, 
supervised machine learning algorithm utilized in both 
classification and regression. Its objective is to assign 
a data point to a class based on the nearest point in the 
training dataset. Among the nearest neighbors, the class 
with the highest number of occurrences is considered 
predictive. In regression, the average value of its neigh-
bors is used. The steps of the k-NN algorithm for clas-
sifying new data are as follows: determining the number 
of nearest neighbors (k), computing the distance between 
the new data and training data points, ranking the dis-
tances, and finally classifying the new data based on the 
majority of votes from these neighboring points [21, 22].

Performance criteria
The performance of the predictive models was evaluated 
using performance criteria, including accuracy, sensitiv-
ity, specificity, positive predictive value (PPV), and nega-
tive predictive value (NPV). Additionally, the area under 
the curve (AUC) of the receiver operating characteristic 
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(ROC) was employed to assess the models’ ability to pre-
dict the failure of the treatment.

Software
For statistical analysis, SPSS version 23 software was uti-
lized to present descriptive and inferential statistics, as 
well as to conduct univariate and multivariate analyses. 
The random Forest package [23] was used to fit the RF 
model, the e1071 package [24] for fitting SVM, and the 
caret package [25] for calculating performance criteria. 
These packages are accessible in R4.0.3 software.

Results
Out of a total of 332 subjects who underwent SSPSF for 
treating thoracolumbar burst fractures, 204 (61.4%) were 
males and 128 (38.6%) were females. The average age and 
follow-up time were 47.49 ± 9.75 years and 20.57 ± 5.31 
months, respectively. The most common causes of 
trauma were traffic road accidents (54.5%) and falls from 
height (31.9%). T12 (38.3%) and L1 (33.7%) were the most 
frequently affected vertebrae, as indicated in Table  1. 
Index level instrumentation was performed in 108 sub-
jects (32.5%), and crosslinks were used in 102 subjects 
(30.7%).

Treatment failure occurred in 44 cases (13.3%), primar-
ily due to instrument failure and progressive kyphosis 
during the follow-up period. All 44 patients underwent 
long segment posterior spinal fusion during reoperation, 

and none required a combined anterior-posterior 
approach (See Table 2).

Factors associated with treatment failure in the uni-
variate analysis showed that the lack of index level instru-
mentation, higher BMI, greater Cobb angle and IPD on 
admission, and a higher LSC score were linked to an 
increased risk of treatment failure (p < 0.05) [Tables 3 and 
4]. However, there was no association between treatment 
failure and age, gender, smoking, VBCR, PAHC, canal 

Table 1  Descriptive characteristics of the sample
Variable Frequency (%)
Sex Male 204 (61.4)

Female 128(38.6)
Failure of treatment Yes 44(13.3)

No 288(86.7)
Cause of Injury Road Traffic crashes 181(54.5)

Fall 106 (31.9)
Sport 12 (3.6)
Assault/violence related 29 (8.7)
Other 4 (1.2)

Level of Vertebra T10 15 (4.5)
T11 27 (8.1)
T12 127 (38.3)
L1 112 (33.7)
L2 51 (15.4)

Smoking Yes 58 (17.5)
No 274 (82.5)

Diabetes Yes 54 (16.3)
No 278(83.7)

Use of crosslinks Yes 102 (30.7)
No 230 (69.3)

Index level 
instrumentation

Yes 108 (32.5)
No 224(67.5)

Posterolateral fusion Yes 158 (47.6)
No 174 (52.4)

Table 2  Mean and standard deviation of quantitative variables
Variable Mean Standard Deviation
Age 47.49 9.75
Follow Up 20.57 5.31
Body Mass Index 23.67 2.09
VBCR (%) 65.33 5.31
PAHC (%) 69.76 5.22
Cobb(°) 13.23 4.07
Canal compromise
(%)

21.77 4.57

LSC 5.69 0.81
IPD(%) 18.31 6.42
VAS 5.39 0.68
VBCR: Vertebral body compression rate; PAHC: percentage of anterior height 
compression; IPD: Interpedicular Distance; VAS: Visual Analogue Scale; LSC: 
Load sharing classification

Table 3  Relationship between qualitative variables and failure of 
treatment
Variable Failure of treatment Statis-

tical 
analysis

Yes
N (%)

No
N (%)

Sex Male 29 (14.2) 175 (85.8) P = 0.621
Female 15 (11.7) 113 (88.3)

Cause of Injury Road 
Traffic

28 (15.5) 153 (84.5) N/A

Fall 15 (14.2) 91 (85.8)
Sport 2 (16.6) 10(83.3)
Assault 1 (3.4) 28 (96.6)
Other 0(0.00) 4 (100.0)

Level of Vertebra T10 3(20.0) 12(80.0) N/A
T11 6 (22.2) 21(77.8)
T12 19(15.0) 108(85.0)
L1 10 (8.9) 102 (91.1)
L2 6(11.8) 45 (88.2)

Smoking Yes 14(25.9) 40(74.1) P = 0.231
No 35 (12.8) 239 (87.2)

Diabetes Yes 14(25.9) 40 (74.1) P = 0.182
No 30 (10.8) 248 (89.2)

Index level 
instrumentation

Yes 7(6.5) 101 (93.5) P = 0.002
No 37 (16.5) 187 (83.5)

Posterolateral fusion Yes 25(15.8) 133 (84.2) P = 0.163
No 19 (10.9) 155 (89.1)

Use of crosslinks Yes 14 (13.7) 88 (86.3) P = 0.474
No 30 (13.0) 200 (87.0)
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compromise, VAS, or the use of crosslinks and postero-
lateral fusion [Tables 3 and 4].

In the multivariate analysis using binary logistic regres-
sion, LSC (odds ratio [OR], 2.73; 95% confidence inter-
val [95% CI], 1.31–3.86; P = 0.003), the lack of index level 
instrumentation (OR, 2.33; 95% CI 1.71–3.23; P = 0.011), 
and IPD (OR, 1.84; 95% CI 1.49–2.76; P = 0.027) were 
found to be related to treatment failure [Table 5].

In this study, each machine learning model utilized 
feature selection to assess the independent significance 
of each risk factor. The RF model identified LSC and the 
lack of index level instrumentation as the most significant 
variables. The features selected by RF, based on the mean 
Gini index in descending order, were LSC, the lack of 
index level instrumentation, IPD, Cobb angle, and BMI.

The study also evaluated the accuracy of LR, RF, SVM, 
and k-NN models in predicting treatment failure. RF 
demonstrated the highest accuracy (0.948), followed by 
SVM (0.933), k-NN (0.927), and LR (0.917) respectively. 
Additionally, the RF model outperformed other models 
based on sensitivity and specificity (sensitivity = 0.863, 
specificity = 0.959). LR, SVM, and k-NN predicted 
treatment failure with NPVs of 0.857, 0.763, and 0.722 
respectively. LR had a PPV of 0.773, followed closely by 
RF (PPV = 0.748). The AUC values for RF, LR, SVM, and 
k-NN were 0.911, 0.823, 0.844, and 0.877 respectively 
[Table 6].

Discussion
Our findings indicate that a higher LSC score, the 
absence of index level instrumentation, and a greater 
IPD were linked to treatment failure in patients undergo-
ing SSPSF for traumatic thoracolumbar burst fractures. 
The primary objective of posterior spinal fixation for 
these fractures is to restore spinal stability and prevent 
neurological dysfunction [2, 7]. Previous studies have 
demonstrated favorable outcomes for SSPSF in carefully 
selected cases, with significant improvements in kyphosis 
angle correction and anterior vertebral height [7, 14].

Fracture reduction can be achieved through techniques 
such as postural reduction, pre-contouring of rods, and 
cantilever correction. The use of index level instrumen-
tation has been shown to enhance the effectiveness of 
SSPSF by maintaining sagittal alignment and minimiz-
ing instrument failure. Research has indicated that index 
level instrumentation can substantially increase axial and 
flexion stiffness, protect the anterior column during flex-
ion-extension loading, and reduce rates of kyphosis cor-
rection failure [8, 26].

Additionally, studies have reported that index level 
instrumentation can protect against correction loss and 
implant failure, leading to improved kyphosis and ver-
tebral height. However, it is important to note that the 
presence of a pedicular wall fracture is a contraindication 
to index level instrumentation, although unilateral pedi-
cle screw insertion on the opposite side of the fractured 
pedicle has been reported to yield comparable outcomes 
[27, 28].

Our binary logistic regression analysis revealed that a 
greater IPD and higher LSC score are associated with an 
increased risk of treatment failure in patients undergoing 
SSPSF. The Load Sharing Classification system, devel-
oped to quantify vertebral comminution, has been sug-
gested as a prognostic tool for instrumentation failure in 
SSPSF cases. While some studies have found an associa-
tion between LSC score and implant failure, others have 
reported conflicting results [29, 30].

In previous studies, IPD has been identified as 
an important factor in assessing the severity of 

Table 4  Relationship between need for surgery and failure of 
treatment
Variable Failure of treatment Statistical test

Yes No
Age (year) 48.21 (9.91) 47.23 (9.42) P = 0.255
Follow Up 20.37 (5.21) 21.72 (5.42) P = 0.323
Body Mass Index 26.79 (2.2) 23.6 (1.8) *P = 0.024
VBCR (%) 64.58 (2.39) 66.99 (2.48) P = 0.521
PAHC (%) 68.02 (3.58) 73.16 (4.17) P = 0.235
Cobb(°) 17.11 (3.19) 11.11 (3.09) *P = 0.013
Canal compromise (%) 24.12 (3.31) 21.22 (3.8) P = 0.221
IPD 27.41 (4.35) 18.88 (3.57) *p < 0.001
LSC 7.38 (0.79) 4.97 (0.77) *P < 0.001
VAS 6.11 (0.87) 5.89 (0.79) P = 0.442
VBCR: Vertebral body compression rate; PAHC: percentage of anterior height 
compression; IPD: Interpedicular Distance; VAS: Visual Analogue Scale; LSC: 
Load sharing classification

Table 5  Binary logistic regression analysis
variables Odds ratio 95% CI P value
Index level instrumentation 2.33 1.71–3.23 *P = 0.011
Load sharing classification 2.73 1.31–3.86 P = 0.003
Body Mass Index 1.32 0.96–1.64 P = 0.327
Cobb (°) 1.151 0.88– 1.72 P = 0.428
IPD 1.84 1.49–2.76 *P = 0.027

Table 6  Evaluation criteria for comparison performance of 
machine learning models (LR, RF, SVM and k-NN)
Evaluation criteria Model
variables RF LR SVM K-NN
Accuracy 0.948 0.917 0.933 0.927
Sensitivity 0.863 0.697 0.724 0.811
Specificity 0.959 0.945 0.943 0.950
Positive predictive value 0.748 0.773 0.691 0.698
Negative predictive value 0.901 0.857 0.763 0.722
AUC 0.911 0.823 0.844 0.877
RF:Random forest; LR:Logistic regression; SVM:Support vector machine; k-NN: 
k- nearest neighbor; AUC: area under the curve of mean receiver operating 
characteristics
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thoracolumbar fractures. Greater widening of the inter-
pedicular distance has been linked to a higher likelihood 
of bone fragment retropulsion into the spinal canal and 
an increased risk of neurological deficits. IPD has been 
proposed as a useful parameter for evaluating canal com-
promise, laminar fractures, and the severity of neurologi-
cal deficits [31, 32].

The objective of this study was to employ machine 
learning models to predict factors associated with treat-
ment failure in thoracolumbar burst fractures treated 
with SSPSF. The results presented in Table 6 indicate that 
all machine learning models performed well, with Ran-
dom Forest (RF) demonstrating superior performance 
across all criteria in predicting treatment failure with the 
least amount of error. When comparing the classifica-
tion ability of the evaluated models, RF outperformed the 
others.

RF is an ensemble learning method that combines mul-
tiple decision trees to make predictions. Several charac-
teristics contribute to its superior performance. Firstly, 
the ensemble approach helps mitigate overfitting and 
enhances the model’s generalization ability by combin-
ing predictions from different subsets of the data. Sec-
ondly, RF provides a measure of variable importance, 
identifying the relative contribution of each input vari-
able in making predictions. This feature aids in identify-
ing influential factors associated with treatment failure. 
Additionally, RF is capable of capturing complex non-
linear relationships, handling outliers and missing data, 
and does not assume a specific data distribution, making 
it suitable for analyzing complex datasets without strict 
assumptions [33, 34].

The study found that all models demonstrated accept-
able performance in terms of the area under the curve 
(AUC), yielding reliable predictions without sacrificing 
sensitivity and specificity. However, it was noted that the 
performance of the predicting models is dependent on 
the training dataset, and partiality in training can intro-
duce bias. The study used 80% of the data for training and 
20% for testing, but acknowledged that a larger dataset 
would help reduce bias. Missing data was identified as 
an important limitation, but in this study, there was no 
missing data due to meticulous physical exams and clini-
cal evaluations.

Limitations
Limitations of the study should be considered when 
interpreting the findings and their clinical implica-
tions. The retrospective design and reliance on existing 
medical records may lead to incomplete or missing data, 
potentially limiting the ability to account for all relevant 
variables and confounders. Additionally, the study was 
conducted at a single center, potentially limiting the gen-
eralizability of the findings. Although the study included 

332 subjects, a larger sample size would enhance statisti-
cal power and generalizability.

While the machine learning models demonstrated sat-
isfactory predictive performance, their interpretability 
may be limited. Understanding the specific factors driv-
ing the predictions of these models can be challenging, 
potentially affecting their clinical utility and decision-
making process. Prospective studies with standardized 
data collection protocols would provide more robust and 
comprehensive results.

Conclusions
In conclusion, this study showcased the effectiveness of 
machine learning models in predicting treatment failure 
in thoracolumbar burst fractures treated with SSPSF. The 
results highlight the potential of these models to forecast 
treatment failure in this specific patient group, providing 
valuable prognostic insights for early intervention and 
potential cost reductions.
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