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Abstract
Background  The importance of several scapulothoracic muscles, including trapezius and serratus anterior, in 
maintaining physiological scapula kinematics has been highlighted in the past. However, the relationship between 
the scapula and the latissimus dorsi muscle remains unclear. Our clinical surgical observation is that the latissimus 
dorsi does not directly attach but rather runs superficial to the inferior angle of the scapula. Based on this observation, 
we hypothesise that the latissimus dorsi creates a dynamic track on which the scapula glides under the muscle belly 
during elevation of the arm, creating the latissimus-scapula overlap (LSO).

Methods  All consecutive patients who had a whole-body computed tomography scan (CT) in case of polytrauma 
evaluation between 2018 and 2021, with complete depiction of the scapula and latissimus dorsi muscle, were 
analysed. 150 shoulders in 90 patients with arms up were matched according to their age (within five years), 
gender, and affected side with 150 shoulders in 88 patients with arms down. Patients with pathologies of the upper 
extremities or thorax that potentially could alter LSO measurements were excluded. LSO was calculated as a ratio of 
the measured area of the latissimus dorsi projection on the scapula and the total scapula area.

Results  The mean age of the 178 patients (48 females; 13 males) was 60 years. The arms-up group showed a 
significantly higher LSO than the arms-down group (19.9 ± 6.3% vs. 2.7 ± 2.2%; p < 0.0001). In the arms-up group, 
approximately one fifth of the scapula was overlapped inferiorly by the muscle belly of the latissimus dorsi, contrary 
to the almost non-existing LSO in the arms-down group.

Conclusion  With arms up, humans show a significantly higher LSO in comparison to arms down indicating that 
the latissimus dorsi indeed creates a dynamic track on which the scapula is forced to travel during abduction of the 
arm. This finding of increased LSO during the elevation of the arm warrants further consideration of the role of the 
latissimus dorsi in scapula kinematics and potentially scapular dyskinesis.

Level of evidence  Level two diagnostic study.
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Introduction
Scapular dyskinesis (SD) is present in as many as 
67–100% of athletes with shoulder injuries [1], but also 
in many asymptomatic individuals [2]. It is character-
ized by increased protraction with a prominent scapular 
medial border and an inferior angle, resulting in atypical 
and inefficient kinematics of the arm and shoulder [3, 
4]. Disrupting scapulothoracic kinematics overloads the 
compensatory musculature, limits shoulder strength and 
range of motion, and causes pain [5–10]. SD may occur 
due to several shoulder pathologies, including injury of 
the acromioclavicular joint, rotator cuff tear, clavicular 
fracture, shoulder impingement, multidirectional insta-
bility, and labral injury [11–18]. Furthermore, scapular 
muscles are essential contributors to scapular position-
ing both at rest and during shoulder movement [11, 19]. 
The upper and lower trapezius muscles, as well as ser-
ratus anterior, have been shown to be key muscles for 
maintaining optimal scapular stability during shoulder 
motion [20, 21]. While trapezius and serratus anterior 
muscles initiate upward rotation and posterior tilt, the 
lower trapezius plays a key role in scapular stability in the 
overhead position of the arm, as well as in the descent 
from maximum elevation [22, 23]. The rhomboids, leva-
tor scapulae and pectoralis minor assist the trapezius 
and contribute to controlling medial and lateral scapular 
translation [23].

The latissimus dorsi originates on the thoracolumbar 
aponeurosis of T7 through the iliac crest and inserts on 
the crest of the lesser tuberosity of the humerus with 
direct and indirect attachments to the inferior bor-
der of the scapula in supposedly two-thirds of the cases 
[24, 25]. It affects scapular motion as the prime mover 
of the arm and its effect on SD plays a relatively small 
role in the literature. Recently, a significant relationship 
between increased latissimus stiffness and altered scapu-
lar kinematics due to the pull of the latissimus dorsi on 
the inferior border of the scapula was found [24]. Thus, 
regardless of the specific cause of the altered scapu-
lar kinematics, an apparent relationship seems to exist 
between the latissimus dorsi and SD. Furthermore, many 
anatomy books depict the inferior angle of the scapula as 
one of the origins of the latissimus dorsi muscle [26–34]. 
According to our clinical surgical observation, the posi-
tion of the scapula can change significantly in relation to 
the muscle belly of the latissimus dorsi, which may create 
a dynamic track on which the inferior border of the scap-
ula is overlapped by the muscle belly and glides under 
it during arm movement (Video 1 and 2). This dynamic 
restraint, dependent on the degree of the latissimus over-
lap, can theoretically play a significant role in prevent-
ing SD by stabilizing the inferior border of the scapula 
against the chest and optimizing the position of the scap-
ula throughout the range of motion, for example, when 

performing pull ups. Therefore, the aim of this study 
was to evaluate the latissimus-scapula overlap (LSO) in 
patients without any pathologies of the upper extremities 
or thorax and its variance in arms up and down positions.

Materials and methods
Study population
All consecutive patients who underwent whole-body 
computed tomography (CT) scans for polytrauma evalu-
ation between 2018 and 2021, from our institutional radi-
ology database, with complete depiction of the scapula 
and latissimus dorsi muscle, were analyzed. A total of 
300 shoulders in 178 patients were included in our study, 
with 150 shoulders in 90 patients having their arms raised 
(arms-up group) and matched according to age (within 
five years), gender, and affected side with 150 shoul-
ders in 88 patients with arms in the anatomical position 
(arms-down group). Patients in the arms-up group were 
asked to actively raise their arms above their heads by 
forward flexion and abduction in the anatomical posture, 
while those in the arms-down group kept their arms in 
the anatomical position. Both groups were in a prone 
position during polytrauma evaluation. Patients with 
pathologies of the upper extremities or thorax that could 
potentially alter LSO measurements (e.g., fractures, pros-
theses, dysplasia, or diagnosed soft tissue pathologies 
such as adhesive capsulitis and rotator cuff disease) were 
excluded. Approval from the institutional ethics commit-
tee was obtained prior to onset of investigation.

Image measurements
For all measurements, a standardized axial imaging plane 
was created using multi-planar reconstruction with the 
help of Visage software (version 7.1; Visage Imaging, 
Berlin, Germany). The regions of scapula covered by the 
latissimus dorsi muscle were manually marked in the 
axial view (Fig.  1) to generate a segmented model. The 
projection of this model in the coronal plane was then 
used to measure the area of the latissimus dorsi projec-
tion on the scapula (Fig. 2a1 and b1). LSO was calculated 
as a ratio of the measured area of the latissimus dorsi pro-
jection against the scapula area, defined with anatomical 
borders medially and laterally, superiorly with the scapu-
lar spine, craniolaterally through a parallel line to glenoid 
cavity between the scapular notch and the distal end of 
the glenoid neck (Fig. 2a2 and b2).

Statistics
For statistical analysis, IBM SPSS Statistics 25.0 soft-
ware (IBM, Armonk, NY, USA) was employed. If data 
were normally distributed, the paired-samples Stu-
dent’s t-test was used to compare measurement results. 
If the distribution was abnormal, paired samples were 
compared using Wilcoxon’s signed rank test. Unpaired 
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samples were analyzed using the Mann–Whitney U test. 
A p-value < 0.05 was considered significant. To compare 
LSO measurements among groups, the one-way ANOVA 
test was used.

Results
The study cohort comprised 48 female and 130 male 
patients with a mean age of 60 years (range, 20–91 years) 
and without any pathologies of the upper extremities or 
thorax. The arms-up group consisted of 24 female and 66 
male patients, while the arms-down group had 24 female 
and 64 male patients (Table 1). LSO showed a significant 
difference between the arms-up and -down groups, with 

Fig. 2  Projection of the latissimus dorsi muscle (red lines) overlapping the scapula in the coronal CT scan of a patient within the arms-up group (a1) and 
within the arms-down group (b1), respectively. The scapula area (green lines) was defined with anatomical borders and a line between the scapular notch 
and the distal end of the glenoidal cavity as the medio-proximal border (a2 and b2)

 

Fig. 1  Exemplary axial CT views from cranial to caudal direction (a→ d) of a right shoulder in arms up position. The regions of the scapula covered by 
the latissimus dorsi muscle are depicted in green, and the borders of the latissimus dorsi muscle in red
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significantly higher LSO in arms-up group compared to 
the arms-down group (19.9% ±  6.3% vs. 2.7% ±  2.2%; 
p < 0.0001) (Fig.  3). (Table  1). In order to visualize this 
significant difference, three dimensional (3D) segmenta-
tion was conducted for the arms-up and -down positions 

(Fig. 4). While there was a trend in mean LSOs between 
female and male patients in the arms-up group, with 
higher LSO in men (p = 0.08), the difference in mean 
LSOs between sexes in the arms-down group was sig-
nificant, with lesser LSO in men (p = 0.04). No significant 
difference in LSO was detected between the age groups 
(Table  1) within the arms-up and -down groups. The 
mean LSO in the arms-up group changed significantly 
according to the side (right: 21.2 ±  6.1% versus left: 18.7 
±  6.2%; p = 0.02), whereas in the arms-down group, no 
significant difference was identified between the sides.

Discussion
The primary objective of this study was to assess the 
variation in LSO in patients with arms up and down and 
without any pathologies of the upper extremities or tho-
rax. Our data revealed a significant difference in mean 
LSO between the arms-up and -down groups, with the 

Fig. 4  Projection of the latissimus dorsi muscle (depicted in green) overlapping the scapula (its measured area inferior to the scapular spine marked off 
in red) in 3D segmentation of a patient within the arms-up group (a; LSO = 24.8%) and within the arms-down group (b; LSO = 2.5%), respectively

 

Fig. 3  Frequency of LSO percentages within the arms-up (a) and -down 
(b) group was illustrated in 6% intervals
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arms-up group exhibiting a notably higher LSO than the 
arms-down group. The observed variance based on arm 
position led us to question the anatomical relationship 
between the latissimus dorsi muscle and the scapula.

Literature suggests a potential attachment of the latis-
simus dorsi muscle to the inferior angle of the scapula 
[26–34]. To our knowledge, the studies by Williams et al. 
[35] and by Pouliart et al. [25] are the only ones which 
describe a possible insertion of the latissimus dorsi to 
the inferior angle of the scapula. Pouliart et al. [25] stud-
ied 100 cadaver specimens and identified three pos-
sible types for the relationship between the latissimus 
dorsi and the inferior angle of the scapula: In 43 out of 
100 specimens, they observed muscular fibers of the 
latissimus dorsi emerging from the inferior angle of the 
scapula (type 1, scapular connection), in 36 out of 100 
specimens few fibrous strands between the two (type 2a, 
indirect attachment) and in 21 out of 100 specimens a 
bursa and no connective tissue (type 2b, no attachment). 
This firm attachment of the latissimus dorsi to the infe-
rior angle of the scapula could not be explained under the 
light of our results, since our LSO measurements illus-
trated a significant difference between arms up and down 
groups. In parallel to that, our 3D segmentations (Fig. 4) 
and cadaver illustrations (Video 1 and 2) supported our 
radiologic measurements and the concept of a “latissimus 
guided track”, illustrating the inferior border of the scap-
ula traveling dynamically under the muscle during arm 
movement. This dynamic restraint illustrates a signifi-
cant increase in LSO during arm abduction and since the 
latissimus tendon inserts on the humerus, the position of 
this track changes with the position of the arm, presum-
ably optimizing the position of the scapula throughout 

the range of motion. This dynamic track may stabilize the 
inferior border of the scapula against the chest and could 
be a factor in deciphering the pathophysiology of SD.

The upper and lower trapezius muscles along with the 
serratus anterior muscles have been shown to be the 
greatest contributors to scapular stability and mobility 
[20, 21, 36], playing a crucial role in explaining primary 
and secondary SD. In comparison to trapezius and ser-
ratus anterior muscles, the role of latissimus dorsi mus-
cle in the pathomechanism of SD remains less explored. 
In a cross-sectional study with 19 collegiate swimmers, 
Laudner et al. measured latissimus dorsi stiffness of the 
dominant arm while in a lengthened position with a 
myotonometer and used an electromagnetic tracking 
device to measure scapular kinematics at humeral eleva-
tion angles of 30°, 60°, 90° and 110° within the scapular 
plane [24]. They illustrated moderate-to-good relation-
ships between increased latissimus dorsi stiffness and 
increased scapular upward rotation and posterior tilt, 
as well as decreased scapular internal rotation. These 
alterations in positioning and motion of the scapula were 
attributed to the pull of the latissimus dorsi on the infe-
rior border of the scapula and early scapular elevation 
during arm elevation, resulting in a noticeable disrup-
tion in scapula–humeral rhythm. Our cadaver studies 
and radiologic measurements support this relationship, 
suggesting that a contracted latissimus dorsi could poten-
tially place increased pressure with its dynamic track 
throughout the range of motion on the inferior scapular 
border moving it anteriorly towards the thorax resulting 
in increased posterior tilt [24]. Regardless of the specific 
explanation of the altered scapular mechanics, a distinct 
relationship does appear to exist between latissimus dorsi 
muscle and scapular kinematics.

This study has some limitations. First, LSO measure-
ments were conducted in a cohort without any patholo-
gies of the upper extremities or thorax and thus the 
results cannot explain a pathologic situation. Second, the 
points measured were the starting and ending points of 
the tract, providing static data for explaining a dynamic 
phenomenon. Further studies employing 3D measure-
ments of scapular motion during arm elevation are 
recommended for instance with magnetic resonance 
imaging or new motion analysis techniques optimized 
for thoracoscapular movement to identify this dynamic 
track. Third, the changes in muscle parameters during 
active motion like activity, strength, tightness and degree 
of contraction could provide a more comprehensive 
understanding and strengthen the radiological and ana-
tomical observance presented in this study. Fourth, CT 
scan allows for bony visualization and not the optimal 
method for precise description of the latissimus dorsi 
fibers and their pathway.

Table 1  Comparison between the arms-up and -down groups 
according to their age, gender and injured side

Arms-up Arms-down p-value
Total shoulders, n 150 150 -
Patients, n
(female : male)

90
(24 : 66)

88
(24 : 64)

-

Mean age in years 60 ±  20.5 59 ±  20.4 0.30
Mean LSO in % 19.9 ±  6.3 2.7 ±  2.2 < 0.0001
Mean LSO in % according 
to sex (female : male)

18.4 ±  4.5
:
20.5 ±  6.7
(p = 0.08)

3.3 ±  3.1
:
2.5 ±  1.8
(p = 0.04)

< 0.0001
< 0.0001

Mean LSO in % according 
to age
  20–39 22.0 ±  5.7 2.6 ±  2.0 < 0.0001
  40–59 19.2 ±  7.3 2.7 ±  2.3 < 0.0001
  60–79 19.4 ±  5.9 2.6 ±  2.3 < 0.0001
  > 80 19.6 ±  5.9 3.2 ±  2.2 < 0.0001
Mean LSO in % according 
to side (right : left)

21.2 ±  6.1
:
18.7 ±  6.2
(p = 0.018)

2.9 ±  2.3
:
2.6 ±  2.1
(p = 0.63)

< 0.0001
< 0.0001
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Conclusion
Patients with arms up showed a significantly higher LSO 
compared to patients with arms down. The arm position-
dependent change in LSO may contribute to understand-
ing altered scapular kinematics in SD. Further research is 
required to explore the precise mechanisms of the “latis-
simus guided track” in patients with SD and its potential 
implications for treatment interventions.

Abbreviations
CT	� Computed tomography
LSO	� Latissimus-scapula overlap
SD	� Scapular dyskinesis
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Video 1: Increase in LSO while arms reaching the arms-up position and its 
decrease during arm adduction, illustrating a dynamic track guided by the 
latissimus dorsi muscle throughout the range of motion

Video 2: “Latissimus guided track” after the excision of the fascia for better 
illustrative purposes
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