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Abstract 

Purpose  This research aimed to develop a machine learning model to predict the potential risk of prolonged length 
of stay in hospital before operation, which can be used to strengthen patient management.

Methods  Patients who underwent posterior spinal deformity surgery (PSDS) from eleven medical institutions 
in China between 2015 and 2022 were included. Detailed preoperative patient data, including demographics, medical 
history, comorbidities, preoperative laboratory results, and surgery details, were collected from their electronic medi‑
cal records. The cohort was randomly divided into a training dataset and a validation dataset with a ratio of 70:30. 
Based on Boruta algorithm, nine different machine learning algorithms and a stack ensemble model were trained 
after hyperparameters tuning visualization and evaluated on the area under the receiver operating characteristic 
curve (AUROC), precision-recall curve, calibration, and decision curve analysis. Visualization of Shapley Additive exPla‑
nations method finally contributed to explaining model prediction.

Results  Of the 162 included patients, the K Nearest Neighbors algorithm performed the best in the validation group 
compared with other machine learning models (yielding an AUROC of 0.8191 and PRAUC of 0.6175). The top five con‑
tributing variables were the preoperative hemoglobin, height, body mass index, age, and preoperative white blood 
cells. A web-based calculator was further developed to improve the predictive model’s clinical operability.

Conclusions  Our study established and validated a clinical predictive model for prolonged postoperative hospitali‑
zation duration in patients who underwent PSDS, which offered valuable prognostic information for preoperative 
planning and postoperative care for clinicians.
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Introduction
Spinal deformity encompasses a wide range of condi-
tions, such as scoliosis and kyphosis, which is commonly 
classified as congenital deformity, degenerative deform-
ity, neuromuscular deformity, idiopathic scoliosis, and 
deformity caused by trauma or syndromes [1, 2]. Adult 
spinal deformity (ASD) affects 15%–20% of the adult 
population, with elderly groups observing higher inci-
dence [3]. Given the ASD-related pain, disability, and 
decreased quality of life, surgical intervention is often 
necessary to correct these deformities and alleviate asso-
ciated symptoms [4]. Despite the large patient population 
involved and the high necessity of surgery, spine correc-
tion surgery presents complex challenges to clinicians 
due to its complicated surgical procedure and relatively 
high rates of postoperative complications. As a whole, 
spine correction surgery is still cautiously performed and 
few related studies have been carried out in clinical prac-
tice [5].

In recent years, the concept of Enhanced Recovery 
After Surgery (ERAS) has been widely popularized in 
China. Its meticulous management during the periopera-
tive period has great clinical significance and has surpris-
ing effects on promoting rapid recovery after surgery. The 
purpose of ERAS is to shorten the length of stay (LOS) in 
hospital, save medical costs, and reduce the occurrence 
of complications and mortality [6]. The postoperative 
period in hospital plays a crucial role in patient recovery 
and overall treatment outcomes. Due to the extensive dis-
section of paraspinal muscles in spinal surgery, patients 
have a high probability of preoperative and postoperative 
bleeding and limited postoperative activities. In addition, 
some patients may be complicated with other chronic 
diseases before operation, so the risk of prolonged LOS 
in patients undergoing posterior lumbar interbody fusion 
surgery is greatly increased. Prolonged LOS in hospital 
following spinal deformity surgery can lead to increased 
healthcare costs, patient discomfort, and potential com-
plications [7–10]. Therefore, the ability to accurately pre-
dict postoperative hospital stay extension before surgery 
is paramount in the field of orthopedics, specifically in 
the management of patients with spinal deformities.

Efforts have been made to identify factors contribut-
ing to prolonged LOS in spinal deform patients. Previous 
studies have reported various predictors, including age, 
preoperative heart disease, duration of surgery, num-
ber of levels fused, and postoperative infection [11–14]. 
However, the existing literature lacks a comprehensive 

and validated predictive model that incorporates these 
predictors to accurately estimate the risk of prolonged 
LOS in hospital.

In the past, researchers have initially used machine 
learning (ML) methods to develop prediction models of 
related factors for patients undergoing correction sur-
gery for spinal deformity, including the risk prediction of 
prolonged LOS in hospital [15]. However, these models 
have some limitations, mainly reflected in the single type 
of ML model, few variables, and the model has not been 
clinically verified. Ensemble learning [16] is to compare 
multiple classifiers to complete the learning task together, 
so as to effectively improve the generalization ability of 
the single classifier and solve the over-fitting problem. 
Therefore, in order to further optimize the development 
of the predictive model for prolonged LOS after poste-
rior spinal deformity surgery (PSDS) in patients with spi-
nal deformities, we integrated a wide range of variables 
before, during, and after surgery supported by 8 medical 
institutions. Our goal was to develop a robust and accu-
rate machine learning model that can help clinicians 
identify high-risk patients with extended hospitalization 
before the surgical procedure.

Materials and methods
Study design and cohorts
We performed a multi-center observational cohort study 
using clinical record data from the Degenerative Spine 
Diseases in China (DSDC, NCT05867732) which was 
contributed by 22 medical institutions from January 2015 
to January 2022. It is devoted to evaluating the treat-
ment and prognosis of patients with degenerative spine 
diseases and constructing an assisted decision-making 
system. We extracted patients in this project who were 
diagnosed with spinal deformity and underwent PSDS, 
totaling 162 patients from January 2015 to January 2022 
at eleven hospitals. Our study was approved by the insti-
tutional review board of all participating institutions. 
This study adheres to the Transparent Reporting of a 
Multivariable Prediction Model for Individual Prognosis 
or Diagnosis (TRIPOD) reporting guideline [17].

Inclusion criteria embraced all those patients who 
underwent posterior spinal fusion surgery for correction 
of adolescent or adult idiopathic scoliosis, primary adult 
spine deformity, and post-traumatic spinal deformity in 
the hospital case system (HIS) system. Exclusion crite-
ria included patients with tumors of spine and missing 
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patient data more than 5%. The study flow is shown in 
Fig. 1A.

Outcomes and variables collection
The outcome of interest was prolonged LOS in hospital. 
A prolonged LOS for posterior spinal surgery was con-
sidered greater than or equal to 16 days, meaning that it 
was higher than the 75th percentage in their LOS distri-
butions. All patients underwent standard posterior spinal 
surgery for correction and received routine preoperative 
estimation and intraoperative care.

In total, 38 candidate variables were tested as candidate 
predictors The general clinical factors included age, gen-
der, height, weight, body mass index (BMI), smoking his-
tory, chronic diseases (hypertension, diabetes, coronary 
heart disease, chronic heart failure, ischemic stroke), 
other co-morbidities (lumbar disc herniation, lumbar 
spinal stenosis, lumbar spondylolisthesis, sciatica, osteo-
porosis, lumbar spine fracture, and total comorbidities), 
previous surgical history, history of blood transfusion, 
history of lumbar spine surgery, and preoperative func-
tional limitation. The surgical predictor variable included 
the blood transfusion, bone graft status, estimated intra-
operative blood loss (EBL), the American Society of 
Anesthesiologists (ASA) score, levels of fusion, surgi-
cal site infection, days from diagnosis to surgery, and 
days from admission to surgery days. And preoperative 
laboratory factors included hemoglobin (HB), hema-
tocrit, activated partial thromboplastin time (APTT), 
prothrombin time (PT), fibrinogen (FIB), platelet count, 
white blood cell (WBC) count, and albumin.

Descriptive statistics were used to characterize the 
study population at baseline. Qualitative variables were 
compared using the Pearson Chi-squared test, and nor-
mally distributed quantitative variables were compared 
using t test, while non-normally distributed quantita-
tive data were compared using the Wilcoxon rank test. 
P < 0.05 indicates that all analyses were statistically 
significant.

These clinical variables were used as the predictor vari-
ables for the following model development, and we also 
used heatmaps to visualize the bivariate relationships 
between variables (Fig. 1B).

Model development
Model specification
We aimed to identify factors associated with prolonged 
LOS undergoing PSDS for spinal deformity and establish 
a robust predictive model for clinicians to identify high-
risk patients and intervene at an early stage.

In order to screen the essential variables, we employed 
the Boruta algorithm, a wrapper algorithm that built 
around the random forest classification algorithm 

implemented in the R package Random Forest, to screen 
independent variables for building a machine learning 
model to predict the risk of prolonged LOS in hospital 
[18]. By building shadow features (shadow Max, shadow 
Mean, shadow Min), Boruta algorithm aims to pick out 
the relevant features rather than the minimal optimal set 
of variables. And the algorithm adds extra randomness to 
the system, making the truly important variables clearer. 
After multiple random iterations to build multiple ran-
dom forest classifiers, Boruta’s results are generally more 
stable than those feature selection methods based on a 
single random forest.

The data were randomly divided into a training dataset 
and a validation dataset with a ratio of 70:30. In the train-
ing set, Bayesian optimization was applied to identify the 
best parameters for the hyperparameter tuning process 
of each algorithm and the process was visualized via line 
charts [19]. Fivefold cross-validation was used to evaluate 
predictive performance and general error estimates in the 
model development. Nine kinds of basic ML algorithms 
were employed to construct the models, namely Logis-
tic Regression [20], Decision Tree [21], Elastic Networks 
(Enet) [22], K Nearest Neighbors (KNN) [23], Light Gra-
dient boosting machine (Lightgbm) [24], Random Forest 
[25], eXtreme Gradient Boosting (XGBoost) [26], sup-
port vector machines (SVM) [27], Multilayer perceptron 
(MLP) [28]. Furthermore, based on Lasso regression as 
meta-model, we establish a stacking ensemble model 
that can combine information from nine single classifiers 
mentioned above to predict the patients with prolonged 
LOS after PSDS.

Model validation
We evaluated the predictive performance of our mod-
els based on the area under the receiver operating char-
acteristic curve (AUROC) and precision-recall curve 
(PRAUC), aiming to optimize them for maximum effec-
tiveness. And the AUROC ranges from 0.5 to 1.0, which 
known as the  larger  the  AUROC accompanied the 
stronger ability to distinguish. Meanwhile, we utilized 
decision curve analysis (DCA) to evaluate the clinical 
utility of multiple ML models, which is a practical tool 
that calculates the net benefits of predictive models [29].

Model presentation
We employed the SHapley Additive exPlanation (SHAP) 
algorithm to elucidate the prediction model by present-
ing consistent and locally accurate attribution values 
(SHAP values) for each feature in each prediction model. 
These SHAP values assess the significance of the output 
achieved through the inclusion of a specific feature A, 
considering all possible combinations of features exclud-
ing A [34]. And we randomly selected from the training 



Page 4 of 12Li et al. Journal of Orthopaedic Surgery and Research          (2024) 19:112 

Fig. 1  A The flowchart of analysis illustration of methodology. LR, logistic regression; KNN, k-Nearest Neighbor; SVM, support vector machine; 
Lightgbm, Light Gradient boosting machine; XGBoost, eXtreme Gradient Boosting; ROC, receiver operating curve; PROC, precision-recall curve; 
SHAP, SHapley Additive exPlanations. B (a) The correlation between variables in the training group. (b) and in the testing group. Red indicates 
positive correlation, while blue indicates negative correlation
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set and used a SHAP force plot to visualize the examina-
tion process of the predictor variables with the outcome 
of a single patient.

Finally, a web-based calculator based on the prediction 
model was constructed to enable input of patient preop-
erative data in order to help clinicians evaluate the risk of 
postoperative prolonged LOS.

Results
Cohort characteristics
In total, 162 patients diagnosed with spine deformity and 
receiving PSDS were identified in our study. The whole 
dataset was randomly split into 70% (n = 112) and 30% 
(n = 50) in the training group and the validation group, 
respectively.

Our cohorts were divided into two groups: those 
who had prolonged LOS in hospital and those who had 
not (Additional file  1; Table  S1). The median age of the 
total population is 60.6 (IQR = 21.00, 72.00), and the 
median age of the patients with prolonged LOS and non-
prolonged LOS was 59.0 (IQR = 14.00, 71.00) and 68.0 
(IQR = 54.00, 75.00), respectively. From the basic personal 
information, distribution differences were exhibited in 
the aspects of age, height, weight, and BMI between the 
two groups. The distribution of comorbidity, like hyper-
tension, differed between the two groups. Among the 
factors related to the operation, the intraoperative EBL, 
the proportion of blood transfusion, and bone grafting 
were different between the two groups. The preoperative 
Hb and fibrinogen in patients with prolonged LOS were 
lower than that in patients with normal LOS in hospital. 
Among the spine-related complications we concerned, 
there was no significant difference in the distribution of 
preoperative lumbar disc herniation, dislocation, lumbar 

fracture, and sciatica between the two groups, and there 
was no significant difference in the previous history of 
spinal surgery between the two groups.

Boruta algorithm screening potential predictor variables
After applying Boruta, eight top relevant features were 
returned and depicted in increasing order of importance 
score in Fig. 2a. The eight features were finally used for 
training and building the proposed ensemble model, 
including total comorbidities, preoperative WBC, pre-
operative fibrinogen, BMI, age, height, preoperative HB, 
and days from admission to surgery.

Parameter correlation and model performance
To ensure that each machine model achieved the best 
performance, we further optimized their hyperparam-
eters determined via Bayesian optimization and the vis-
ualized process are reported in Fig. 3A. In our research, 
the most important hyperparameter to tune in regard to 
objective value was the learning rate. In the training set, 
fivefold cross-validation was used to evaluate predictive 
performance and general error estimates in the model 
development. Figure  2b shows that the Enet model got 
the highest clinical predictive value, with an AUROC 
curve of 0.80 ± 0.02, followed by MLP, which had an 
AUROC curve of 0.78 ± 0.03.

Next, we evaluated machine learning models of pre-
diction that had been trained using 9 different machine 
learning algorithms and a stack ensemble model. Based 
on the ROC curves, all ten machine learning algorithms 
demonstrated excellent predictive performance for post-
operative prolonged LOS in both the training and test-
ing sets. Among the training dataset, the KNN model 
displayed the best performance, followed by the stack 

Fig. 2  Feature selection and fivefold cross-validation technique. a Boruta result plot for training data. Blue boxplots correspond to minimal, average, 
and maximum Z score of a shadow attribute. Red and green boxplots represent Z scores of, respectively, rejected and confirmed attributes. b 
Accuracy lines plot of nine ML algorithms through fivefold cross-validation
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model. In terms of the validation dataset, the KNN model 
continued to exhibit superior predictive performance and 
model fitting, yielding an AUROC of 0.8191 and PRAUC 
of 0.6175, followed by the Enet model with an AUROC of 
0.8087 and PRAUC of 0.6026. (all ROCs and precision-
recall curves see Fig. 3B).

The calibration curve showed a strong correlation 
between the predicted and actual risks in terms of Brier 
score (BS), which was used for indicating the calibration 
ability (Fig. 3Ca-b). The KNN model has the best calibra-
tion in the training group (BS = 0) (Fig. 3Ca) and valida-
tion group (0.145) (Fig.  3Cb). Then, DCA was used to 
evaluate the clinical application value of each prediction 
model. As shown in Fig. 3Cc, d, the X-axis represents the 
threshold probability of prolonged LOS, and the Y-axis 
represents the net benefit. KNN model exhibited the 
continuous maximum benefit in the training group, and 
KNN, RF, and Xgboost showed greater benefits in differ-
ent threshold ranges of the test set. However, the benefit 
of the KNN model was sustained across the full threshold 
range.

Overall, we can see that the KNN model had the best 
performance and that there was no overfitting in either 
the training or validation groups from the comparison of 
the above models and related parameters. And the model 
interpretability and development of a web calculator 
were conducted in accordance with the optimal model 
(the KNN model) in the following study.

SHAP analysis of feature importance
SHAP analysis was performed to describe the impor-
tance of features in the KNN model according to global 
feature importance, specific classification results, and 
individual SHAP force plot, as shown in Fig. 4a–e. Preop-
erative HB and height were consistently the top two most 
impactful features. Subsequently, in descending order 
of importance, BMI, age, preoperative WBC, days from 
admission to surgery, preoperative fibrinogen, and total 
comorbidities were identified (Fig. 4a, b).

To further identify the features that have the greatest 
impact on the predictive model, we depicted a SHAP 
dependency plot for the eight features of the KNN model 
(Fig. 4c, d). The plot depicts the individual feature values 

in relation to the SHAP values in the training dataset, 
with the y-axis values denoting the SHAP values of indi-
vidual features and the X-axis denoting the feature val-
ues. When the SHAP value exceeds zero, it indicates an 
increased risk of prolonged LOS in hospital, the higher 
the SHAP value of the feature, the higher the likelihood 
of prolonged LOS in hospital.

Figure 4e depicts a SHAP force plot of a patient’s hos-
pitalization outcome. The base value E[f(X)] was 0.25, 
which reflected the average predicted value of the train-
ing set. Yellow bars represented the feature’s positive 
contribution to the anticipated value, while red bars 
represented the feature’s negative contribution to the 
expected value. The 66-year-old patient had high preop-
erative HB, age, BMI, and total comorbidity scores, with 
only the height score contributing negatively. The model 
predicted a lower possibility in the likelihood of a pro-
longed LOS in hospital based on this information.

Web‑based calculator
In addition, we customized a web calculator (https://​
drwen​le.​shiny​apps.​io/​prolo​ngedL​OS/) based on the fea-
tures in the KNN model to evaluate the probability of 
prolonged LOS in hospital. Figure 5 exhibits the interac-
tive interface and an example usage of the web calculator. 
By inputting the relevant baseline data of the patient to 
be evaluated, the calculator will visualize the evaluation 
process in the form of SHAP force plot, and the evalua-
tion history can be subsequently checked in the interface. 
A machine learning-based predictive model for predict-
ing prolonged length of stay in spine deformity patients 
underwent spine correction surgery.

Discussion
By analyzing the data of 162 participants with 38 types 
of baseline variables, we aimed to establish a robust 
clinical ML model to predict postoperative prolonged 
LOS in patients with spinal deformities using ensem-
ble learning algorithms in this multi-center study. Nine 
metamodels and a stack model were constructed and 
subjected to hyperparameter optimization based on the 
Boruta’s feature selection results. Ultimately, the KNN 
model exhibited the best clinical predictive value in the 

(See figure on next page.)
Fig. 3  A Results of Bayesian hyperparameter optimization. The final hyperparameters were determined by the Optuna hyperparameter tuning 
framework. The Optuna optimizer maximized the out-of-sample area under the receiver operating characteristic (AUCROC). DT, Decision Tree; Enet, 
Elastic Networks; KNN, K Nearest Neighbors; Lightgbm, Light Gradient boosting machine; RF, Random Forest; XGBoost, eXtreme Gradient Boosting; 
SVM, support vector machines; MLP, multilayer perceptron; HPO, hyperparameter optimization. B Model performance presentation. (a) The ROC 
curve of each model in the training group (b) and the testing group; the X-axis represents "1-specificity," while the Y-axis represents sensitivity. (c) 
The precision-recall of each model in the training group (d) and the testing group, the X-axis represents precision, the Y-axis represents recall. C 
Model performance illustration. (a). The calibration curve of each model in the training group (b) and the testing group (c). The DCA curve of each 
model in the training group. (d). The DCA curve of each model in the testing group. BS, Best calibration. DCA, Decision curve analysis

https://drwenle.shinyapps.io/prolongedLOS/
https://drwenle.shinyapps.io/prolongedLOS/
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Fig. 3  (See legend on previous page.)
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validation set, with an AUROC and PRAUC of 0.8191 
and 0.6175, respectively. A web-based calculator was 
further developed to assist with the predictive model’s 
clinical operability. Risk evaluation of LOS in hospital is 
both a challenge and a chance to improve clinical deci-
sion-making and care quality, although in-hospital signs 
remain few. Our application of ensemble learning tried 
to effectively improve the performance of the single clas-
sifier and solve the over-fitting problem. And finally we 
demonstrated the winner model in accurately predicting 
postoperative hospital stay duration, providing valuable 
prognostic information for preoperative planning and 
postoperative care.

A large number of retrospective and prospective 
cohort studies have shown that approximately 30% of 
patients experience perioperative anemia. However, pre-
operative anemia has not been paid enough attention in 
clinical management, with the common approach being 
to correct anemia through blood transfusion or proceed 
without intervention. This not only increases the risks of 
intraoperative blood transfusion and surgical complica-
tions but also raises the incidence of postoperative organ 
damage and mortality rates associated with preoperative 
chronic anemia and intraoperative acute anemia [30]. 
Studies have shown that preoperational anemia patients 

have a significantly higher mean LOS (6.5  days; range 
from 1 to 29  days) than non-anemia patients (4.8  days; 
range from 1 to 27 days) (p ≤ 0.001). Moreover, anemia-
induced intraoperative allogeneic blood transfer is also 
significantly correlated with prolonged LOS [31]. Fur-
thermore, the incidence of preoperative anemia increases 
with age, with 40% of male patients over 80 years of age 
undergoing elective cardiac surgery experiencing pre-
operative anemia [34]. In this predictive model, both 
factors, anemia and elderly, cumulatively decreasing in 
the scores led to a higher likelihood to prolonged LOS 
in hospital. Therefore, clinicians should emphasize the 
management of preoperative anemia, pay attention to 
the cause of anemia and correct it in time before opera-
tion. Perioperative bleeding and coagulation dysfunction 
are multifactorial, and in addition to the involvement of 
hemoglobin, the variables associated with this predictive 
model also include the lack of preoperative fibrinogen 
and WBC.

In this study, height entered our feature selection and 
got a high importance in SHAP value ranking. This phe-
nomenon can be attributed to several factors. Firstly, 
taller individuals often have longer spinal columns and 
more severe spinal deformities or degenerative condi-
tions [32, 33], which may require more extensive surgical 

Fig. 3  continued
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procedures. The complexity and duration of the surgery 
itself can contribute to a prolonged recovery period and 
a subsequent prolonged LOS in hospital. Furthermore, 
the physiological differences associated with taller stature 
may contribute to the longer hospital stay. For instance, 
taller individuals often have a larger body surface area 
and higher metabolic demands [34]. This increased meta-
bolic rate may lead to a higher risk of postoperative com-
plications, such as infection or respiratory issues, which 
can prolong the hospital stay for closer monitoring and 
appropriate treatment. It is important to note that while 
height has been associated with postoperative LOS in 
hospital, it is not the sole determinant. Multiple steps and 
factors contribute to the occurrence of prolonged LOS 
in spine deformity patients who underwent PSDS. Other 
patient-specific factors, such as BMI and total comorbid-
ities, should also be considered when assessing the LOS.

In clinical practice, a series of perioperative optimiza-
tion measures are typically followed according to the 
ERAS guidelines. However, there are few predictive 

models available for visualizing postoperative risks in 
patients, with the venous thromboembolism (VTE) scor-
ing system being the most widely used currently. In this 
study, we developed a predictive model for clinicians by 
integrated machine learning algorithms to determine 
whether the LOS is prolonged in patients who underwent 
spinal correction surgery. We utilized routine preopera-
tive indicators as variables to visualize the postoperative 
hospitalization. Although the postoperative prolonged 
LOS does not directly correspond to treatment decisions, 
it can enable clinicians to make timely intervention for 
patients with preoperative indicators that fail to meet the 
standards. Comparison of multiple models resulted in 
the final winner model having good sensitivity and accu-
racy. Given the good calibration scores displayed by the 
final model, it can also be used to identify patients with 
similar disease severity for subsequent research pur-
poses. Finally, using the model in conjunction with visu-
alization aids such as SHAP plots could help clinicians 
identify the specific components that contribute to the 

Fig. 4  SHAP analysis of feature importance. a–d Top 8 risk predictors for preoperative prediction of prolonged LOS in hospital after spine deformity 
correction. e The SHAP force plot showed the prediction process of a patient with normal LOS in hospital



Page 10 of 12Li et al. Journal of Orthopaedic Surgery and Research          (2024) 19:112 

severity of the disease. Moving forward, the continued 
development and refinement of models that use artificial 
intelligence methodologies have the potential to optimize 
healthcare resources in the realm of spinal surgery and 
we believe that hospitals are constructing the infrastruc-
ture steadily in order to integrate predictive analytics into 
HIS systems.

As mentioned above, the prolonged LOS in hospi-
tal is a result of multiple factors. Although our research 
data came from multi-center medical institutions, we 
mainly collected the preoperative baseline variables of 
patients recorded by HIS. In the process of postopera-
tive recovery, patients’ psychological and mental state 
also significantly affects their length of hospitalization. In 
the subsequent study, our feature collection will further 
focus on the patient-reported outcome (PRO) in periop-
erative management and adopt a standard scoring system 
for variables as far as possible, to improve the accu-
racy and completeness of the prediction model. Finally, 
because of the limitations of diagnosis and surgical risks 
in patients with spine deformity in China, the sample size 
was necessarily relatively small. However, surgical inter-
vention improves patients’ outcomes and quality of life. 
So, the sample size may appear relatively small, but we 
insisted on focusing on this population. It is hoped that 
our study can draw more researchers’ attention to fully 
understand risks and make more improvements in this 
population. Despite its remaining limitations, this study 
represents the largest, multi-center, retrospective cohort 

study focused on the prolonged LOS in spine deformity 
patients who underwent PSDS in China, which could be 
utilized as a primer for future detailed subgroup study.

Conclusion
In conclusion, our study established and validated a 
clinical predictive model for postoperative LOS in hos-
pital extension in patients with spinal deformities using 
ensemble learning techniques. The comparison of ten 
machine learning models and the application of the 
building process together with visualization aids (e.g., for 
SHAP plot) made our prediction model more compre-
hensive and robust than previously reported algorithms, 
which offered valuable prognostic information for pre-
operative planning and postoperative care for clinicians. 
Although limitations exist, this research represents a 
significant step toward improving patient management 
and resource allocation in the field of spine correction 
surgery.

Abbreviations
ASD	� Adult spinal deformity
ERAS	� Enhanced Recovery After Surgery
LOS	� Length of stay
ML	� Machine learning
PSDS	� Posterior spinal deformity surgery
TRIPOD	� Transparent Reporting of a Multivariable Prediction Model for 

Individual Prognosis or Diagnosis
HIS	� Hospital case system
BMI	� Body mass index

Fig. 5  The web calculator of KNN-based predictive model for predicting prolonged LOS and sample exhibition



Page 11 of 12Li et al. Journal of Orthopaedic Surgery and Research          (2024) 19:112 	

EBL	� Estimated intraoperative blood loss
ASA	� American Society of Anesthesiologists
HB	� Hemoglobin
APTT	� Activated partial thromboplastin time
PT	� Prothrombin time
FIB	� Fibrinogen
WBC	� White blood cell
Enet	� Elastic Networks
KNN	� K Nearest Neighbors
Lightgbm	� Light Gradient boosting machine
XGBoost	� EXtreme Gradient Boosting
SVM	� Support vector machines
MLP	� Multilayer perceptron
ROC	� Receiver operating characteristic curve
AUROC	� Area under the receiver operating characteristic curve
PRAUC​	� Area under the precision-recall curve
DCA	� Decision curve analysis
SHAP	� SHapley Additive exPlanation
BS	� Brier score

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13018-​024-​04576-4.

Additional file 1. Patient demographics and baseline characteristics. 

Acknowledgements
Not applicable.

Author contributions
All authors contributed to the study conception and design. LWL, ZYS, ZX, 
QXB, CBH, and HXW conceived and designed the study. XZ, HWH, CL, LXZ, ZY, 
ZJL, LHP, and YXL processed the data. LWL and ZYS developed the machine 
learning model and data analysis. LWL, ZYS, YXL, CAF, XC, LTQ, and HZH drafted 
the manuscript.

Funding
This study was funded by Shaanxi Provincial Health and Health Research 
Fund Project (2022E006) and Liuzhou 2023 Central Guide Local Science and 
Technology Development Fund Project (2023YRQO101).

Availability of data and materials
The datasets used and/or analyzed during the current study are available from 
the corresponding author upon reasonable request.

Declarations

Ethics approval and consent to participate
Our study was approved by the institutional review board of all participating 
institutions (main institution Ethical Number: 2022-IRB-04).

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 State Key Laboratory of Molecular Vaccinology and Molecular, Diagnostics 
and Center for Molecular Imaging and Translational Medicine, School of Public 
Health, Xiamen University, Xiamen, China. 2 Key Laboratory of Neurological 
Diseases, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, 
Jiangsu, China. 3 Department of Spinal Surgery, Guangxi Medical University 
Affiliated Liuzhou People’s Hospital, Liuzhou, China. 4 Cancer Center, The 
First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China. 5 Precision 
Medicine Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 
China. 6 Department of Medical Oncology, The First Affiliated Hospital of Xi’an 

Jiaotong University, Xi’an, China. 7 Third Hospital of Shanxi Medical University, 
Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi 
Hospital, Taiyuan 030032, China. 8 Department of Radiology, The First Dong‑
guan Affiliated Hospital, Guangdong Medical University, Dongguan, China. 
9 Department of Radiology, The First Affiliated Hospital of Shenzhen University, 
Shenzhen Second People’s Hospital, Shenzhen, China. 10 Department 
of Radiology, People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan, 
China. 11 Department of Radiology, Hubei Provincial Hospital of Traditional 
Chinese Medicine, Wuhan, China. 12 Department of Critical Care Medicine, 
Beijing Shijitan Hospital, Capital Medical University, Beijing, China. 13 Depart‑
ment of Cardiology, The Second Affiliated Hospital of Chongqing Medical 
University, Chongqing, China. 14 College of Medical Informatics, Chongqing 
Medical University, Chongqing, China. 15 Medical Data Science Academy, 
Chongqing Medical University, Chongqing, China. 16 Information Center, The 
University-Town Hospital of Chongqing Medical University, Chongqing, China. 
17 Department of Foot and Ankle Surgery, Honghui Hospital, Xi’an Jiaotong 
University, Xi’an, Shaanxi Province, China. 18 Department of Orthopedics, 
Xianyang Central Hospital, Xianyang, Shannxi, China. 19 Eye Institute of Xiamen 
University, School of Medicine, Xiamen University, Xiamen, Fujian, China. 
20 Department of Orthopedics, Shanghai Sixth People’s Hospital Affiliated 
to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China. 
21 Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 
China. 22 Department of Spine Surgery, The Six Affiliated Hospital of Xinjiang 
Medical University, Urumqi, Xinjiang, China. 23 Department of Orthopedics, 
Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China. 
24 Department of Orthopedics, Jiangxi Province Hospital of Integrated Chinese 
and Western Medicine, Nanchang, China. 

Received: 4 December 2023   Accepted: 23 January 2024

References
	1.	 Smith JS, Shaffrey CI, Bess S, Shamji MF, Brodke D, Lenke LG, et al. 

Recent and emerging advances in spinal deformity. Neurosurgery. 
2017;80(3S):S70–85.

	2.	 Ailon T, Smith JS, Shaffrey CI, Lenke LG, Brodke D, Harrop JS, et al. Degen‑
erative spinal deformity. Neurosurgery. 2015;77(Suppl 4):S75-91.

	3.	 Diebo BG, Shah NV, Boachie-Adjei O, Zhu F, Rothenfluh DA, Paulino CB, 
et al. Adult spinal deformity. Lancet. 2019;394(10193):160–72.

	4.	 Silva FE, Lenke LG. Adult degenerative scoliosis: evaluation and manage‑
ment. Neurosurg Focus. 2010;28(3):E1.

	5.	 Yoshida G, Boissiere L, Larrieu D, Bourghli A, Vital JM, Gille O, et al. Advan‑
tages and disadvantages of adult spinal deformity surgery and its impact 
on health-related quality of life. Spine (Phila Pa 1976). 2017;42(6):411–9.

	6.	 Development of an Enhanced Recovery After Surgery (ERAS) approach 
for lumbar spinal fusion. J Neurosurg Spine. 2017;26(4):411–8.

	7.	 Tomov M, Mitsunaga L, Durbin-Johnson B, Nallur D, Roberto R. Reducing 
surgical site infection in spinal surgery with betadine irrigation and 
intrawound vancomycin powder. Spine (Phila Pa 1976). 2015;40(7):491–9.

	8.	 Xu N, Zhang Y, Tian Y, Li B, Qiao H, Zhang X, et al. Prospective study of 
preoperative autologous blood donation for patients with high risk of 
allogeneic blood transfusion in lumbar fusion surgery: a study protocol of 
a randomised controlled trial. BMJ Open. 2022;12(2):e053846.

	9.	 Elsamadicy AA, Koo AB, Kundishora AJ, Chouairi F, Lee M, Hengartner 
AC, et al. Impact of patient and hospital-level risk factors on extended 
length of stay following spinal fusion for adolescent idiopathic scoliosis. J 
Neurosurg Pediatr. 2019:1–7.

	10.	 Boylan MR, Riesgo AM, Chu A, Paulino CB, Feldman DS. Costs and 
complications of increased length of stay following adolescent idiopathic 
scoliosis surgery. J Pediatr Orthop B. 2019;28(1):27–31.

	11.	 Pitter FT, Lindberg-Larsen M, Pedersen AB, Dahl B, Gehrchen M. Readmis‑
sions, length of stay, and mortality after primary surgery for adult spinal 
deformity: a 10-year danish nationwide cohort study. Spine (Phila Pa 
1976). 2019;44(2):E107–E16.

	12.	 Klineberg EO, Passias PG, Jalai CM, Worley N, Sciubba DM, Burton DC, et al. 
Predicting extended length of hospital stay in an adult spinal deformity 
surgical population. Spine (Phila Pa 1976). 2016;41(13):E798–E805.

	13.	 Sciubba D, Jain A, Kebaish KM, Neuman BJ, Daniels AH, Passias PG, et al. 
Development of a preoperative adult spinal deformity comorbidity score 

https://doi.org/10.1186/s13018-024-04576-4
https://doi.org/10.1186/s13018-024-04576-4


Page 12 of 12Li et al. Journal of Orthopaedic Surgery and Research          (2024) 19:112 

that correlates with common quality and value metrics: length of stay, 
major complications, and patient-reported outcomes. Global Spine J. 
2021;11(2):146–53.

	14.	 Fruergaard S, Ohrt-Nissen S, Pitter FT, Hoy K, Lindberg-Larsen M, Eiskjaer S, 
et al. Length of stay, readmission, and mortality after primary surgery for 
pediatric spinal deformities: a 10-year nationwide cohort study. Spine J. 
2021;21(4):653–63.

	15.	 Zhang AS, Veeramani A, Quinn MS, Alsoof D, Kuris EO, Daniels AH. 
Machine learning prediction of length of stay in adult spinal deform‑
ity patients undergoing posterior spine fusion surgery. J Clin Med. 
2021;10(18).

	16.	 Li M, Zeng M, Zhang H, Chen H, Guan L. Biological activity predictions of 
ligands based on hybrid molecular fingerprinting and ensemble learning. 
ACS Omega. 2023;8(6):5561–70.

	17.	 Collins GS, Reitsma JB, Altman DG, Moons KG. Transparent reporting of 
a multivariable prediction model for individual prognosis or diagnosis 
(TRIPOD): the TRIPOD statement. BMJ. 2015;350:g7594.

	18.	 Kursa MB, Rudnicki WR. Feature selection with the boruta package. J Stat 
Softw. 2010;36(11):1–13.

	19.	 Chicco D, Jurman G. The advantages of the Matthews correlation coeffi‑
cient (MCC) over F1 score and accuracy in binary classification evaluation. 
BMC Genomics. 2020;21(1):6.

	20.	 LaValley MP. Logistic regression. Circulation. 2008;117(18):2395–9.
	21.	 Wang XZ, Buontempo FV, Young A, Osborn D. Induction of decision 

trees using genetic programming for modelling ecotoxicity data: 
adaptive discretization of real-valued endpoints. SAR QSAR Environ Res. 
2006;17(5):451–71.

	22.	 Gong CC, Zhou M, Hu Y, Ren ZY, Ren JY, Yao MJ. Elastic net-based iden‑
tification of GAMT as potential diagnostic marker for early-stage gastric 
cancer. Biochem Bioph Res Co. 2022;591:7–12.

	23.	 Bzdok D, Krzywinski M, Altman N. Machine learning: supervised methods. 
Nat Methods. 2018;15(1):5–6.

	24.	 Yan J, Xu YT, Cheng Q, Jiang SQ, Wang Q, Xiao YJ, et al. LightGBM: acceler‑
ated genomically designed crop breeding through ensemble learning. 
Genome Biol. 2021;22(1).

	25.	 Wang C, Zhang Y. Improving scoring-docking-screening powers of 
protein-ligand scoring functions using random forest. J Comput Chem. 
2017;38(3):169–77.

	26.	 Olson RS, Cava W, Mustahsan Z, Varik A, Moore JH. Data-driven advice 
for applying machine learning to bioinformatics problems. Pac Symp 
Biocomput. 2018;23:192–203.

	27.	 Wang HJ, Shao YH, Zhou SL, Zhang C, Xiu NH. Support vector 
machine classifier via L-0/1 soft-margin loss. IEEE Trans Pattern Anal. 
2022;44(10):7253–65.

	28.	 Bishop C. Improving the generalization properties of radial basis function 
neural networks. Neural Comput. 1991;3(4):579–88.

	29.	 Fitzgerald M, Saville BR, Lewis RJ. Decision curve analysis. JAMA. 
2015;313(4):409–10.

	30.	 Hare GMT, Mazer CD. Anemia: perioperative risk and treatment opportu‑
nity. Anesthesiology. 2021;135(3):520–30.

	31.	 Amponsah G, Charwudzi A. Preoperative anaemia and associated post‑
operative outcomes in noncardiac surgery patients in central Region of 
Ghana. Anesthesiol Res Pract. 2017;2017:7410960.

	32.	 Barrios C, Cortes S, Perez-Encinas C, Escriva MD, Benet I, Burgos J, et al. 
Anthropometry and body composition profile of girls with nonsurgi‑
cally treated adolescent idiopathic scoliosis. Spine (Phila Pa 1976). 
2011;36(18):1470–7.

	33.	 Esbjornsson AC, Naili JE. Functional movement compensations persist in 
individuals with hip osteoarthritis performing the five times sit-to-stand 
test 1 year after total hip arthroplasty. J Orthop Surg Res. 2020;15(1):151.

	34.	 Huang Y, Lou X, Jiang C, Ji X, Tao X, Sun J, et al. Gut microbiota is cor‑
related with gastrointestinal adverse events of metformin in patients with 
type 2 diabetes. Front Endocrinol (Lausanne). 2022;13:1044030.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.


	Ensemble learning-assisted prediction of prolonged hospital length of stay after spine correction surgery: a multi-center cohort study
	Abstract 
	Purpose 
	Methods 
	Results 
	Conclusions 

	Introduction
	Materials and methods
	Study design and cohorts
	Outcomes and variables collection
	Model development
	Model specification
	Model validation
	Model presentation


	Results
	Cohort characteristics
	Boruta algorithm screening potential predictor variables
	Parameter correlation and model performance
	SHAP analysis of feature importance
	Web-based calculator

	Discussion
	Conclusion
	Acknowledgements
	References


