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Abstract

Background: Lateral column tibial plateau fracture fixation with a locking screw plate has higher mechanical stability
than other fixation methods. The objectives of the present study were to introduce two newly designed locking
anatomic plates for lateral tibial plateau fracture and to demonstrate their characteristics of the fixation complexes

under the axial loads.

Methods: Three different 3D finite element models of the lateral tibial plateau fracture with the bone plates were
created. Various axial forces (100, 500, 1000, and 1500 N) were applied to simulate the axial compressive load on an
adult knee during daily life. The equivalent maps of displacement and stress were output, and relative displacement

was calculated along the fracture lines.

Results: The displacement and stresses in the fixation complexes increased with the axial force. The equivalent
displacement or stress map of each fixation under different axial forces showed similar distributing characteristics. The

motion characteristics of the three models differed, and the max-shear stress of trabecula increased with the axial load.

Conclusions: These two novel plates could fix lateral tibial plateau fractures involving anterolateral and posterolateral
fragments. Motions after open reduction and stable internal fixation should be advised to decrease the risk of trabecular
microfracture. The relative displacement of the posterolateral fragments is different when using anterolateral plate and
posterolateral plate, which should be considered in choosing the implants for different posterolateral plateau fractures.

Keywords: Locking anatomic plate, Finite element, Equivalent map, Relative displacement

Background

Tibial plateau fractures are common injuries affecting
the lower extremities and compose 1% of all fractures
[1-3]. Inadequate treatment of these fractures may
result in joint instability and decrease in range of motion
(RoM). Several studies have shown that open reduction
and stable internal fixation (ORIF) of displaced tibial
plateau fractures may ensure a more anatomic restor-
ation of the joint surface to allow early motion without
loss of reduction [1, 4-6]. Due to the specific geometry
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of the knee and the biomechanics of tibiofemoral joint,
more than 60% of the tibial plateau fractures affect its
lateral column [7, 8]. Lateral column fracture fixation
with a locking screw plate has shown a higher mechan-
ical stability than other fixation methods [7]. Meanwhile,
researchers put forward that posterolateral column
should be considered individually [9, 10].

Complications are inevitable for some patients with
lateral column tibial plateau fracture undergoing surgery
[1, 11]. It is of clinical significance to investigate how to
reduce complication and improve mechanical stability. It
is reported that a raft of four 3.5-mm cortical screws is
biomechanically stronger than two 6.5-mm cancellous
screws in resisting axial compression [12]. It is also sug-
gested that the use of crossed screws may improve the
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fixation stability, compared with parallel screws [13]. In
the present study, we designed two novel locking
anatomic plates for lateral tibial plateau (Fig. 1). The an-
terolateral plate was used for the anterolateral and the
posterolateral fracture fragments, while the posterolat-
eral plate was only used for posterolateral fracture
fragments.

Finite element analysis (FEA) is one of the computa-
tional methods that have received wide acceptance in
the field of orthopedic research, which would allow not
only detailed quantitative estimations of displacement

Fig. 1 Brief introduction of the plates a, b: ALP: T shape, proximal: five
raft locking screws (3.5 mm) and two crossed locking screws (3.5 mm),
distal: six locking screws (5.0 mm), connection part: five locking screws
(3.5 mm) with different orientation. ¢, d: PLP: inclined T shape with an

angle of 66°, proximal: four locking screws (2.7 mm), distal: four locking
screws (3.5 mm)
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but also the load distributions in both the simulated sur-
gical implants and the surrounding bones [14]. FEA has
been shown to potentially stand for good predictors of
bone fracture [7, 15, 16]. In the present study, FEA was
employed to investigate if the novel plates can provide
sufficient fixation strength for lateral tibial plateau frac-
ture and the respective characteristics of the fixation
complexes of posterolateral tibial plateau fractures when
these novel plates were used.

Methods

A three-dimensional (3D) tibia finite element model
was constructed based on computed tomography
(CT) scan data of a healthy adult man, who was
33 years old, 170 cm in height, and 60 kg in body
weight. Initial CT data of the tibia was obtained with
1-mm cuts from his right leg. The 3D model of the
tibia was constructed from the CT data in the Digital
Imaging and Communications in Medicine (DICOM)
format using Mimics software (v16.0, Materialize
Company, Leuven, Belgium) and then imported into
Geomagic Studio Software (v2014, 3D system Inc,
Rock Hill, SC, USA) for smoothing and polishing the
surface. The STEP format of the 3D tibia model was
saved. All the 3D models of the screws and plates
were created using computer-aided design software
with the characteristics shown in Fig. 1.

The 3D models of tibia and plate-screw system
were then imported into Hypermesh software (v13.0,
Altair Engineering Inc., Michigan, USA). The fracture
models were created according to our preliminary
study with certain fracture line angle (Fig. 2). The
plate-screw systems were then placed in the right
place simulating fracture fixation models. There were
three models for the fracture fixations: single antero-
lateral plateau fracture with anterolateral plate (SALF
+ ALP, Fig. 2a), single posterolateral plateau fracture
with anterolateral plate (SPLF + ALP, Fig. 2b), and
single posterolateral plateau fracture with posterolat-
eral plate (SPLF + PLP, Fig. 1c). Meshing and subse-
quent establishment of the finite element model were
also performed with this software. Tetrahedral ten-
node elements (C3D10M) were used to mesh all parts
of the FE models; the nodes and elements informa-
tion are summarized in Table 1.

The materials of the plate-screw system were assumed
to be homogeneous, isotropic, and linear elastic [7, 17].
The material properties of the plate-screw system (titan-
ium alloy) were assigned according to the manufacturer
specifications and previous studies with an elastic modu-
lus of 78000 MPa and a Poisson ratio of 0.3 [18], while
the tibia was assigned by a novel method in Mimics after
meshing in Hypermesh. Average CT values of each tibia
element were calculated by Mimics automatically with a
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E-modulus Poisson's

COLOUR (MPa)

40.56
40.56
334.96
1249.08
2679.03
4594.99
6977.31
981141
13085.77
16790.91

Fig. 2 Brief introduction of the fracture models and the FE models. a SALF + ALP. b SPLF + ALP. ¢ SPLF + PLP. d The FE model of SALF + ALP
after meshing. e The FE model of SPLF + PLP with axial stress and constrain. f The location of axial stress. g A section of FE model after assigning
the materials, the distribution of CT value, and the scale of materials. FLA: the green line connects the middle point of the posterior cruciate
ligament’s insertion on the tibial plateau, and the medial 1/3 point of the tibial tuberosity was acted as a neutral axis; the blue line connects the

two sides of fracture line

corresponding elastic modulus shown in Fig. 2g and a
Poisson ratio of 0.3. In that way, we did not need to dis-
tinguish the boundary of cortical and cancellous bones
artificially.

The contact surfaces between the plates and screws
were assumed as sharing the common nodes to simulate
the locking screws so were the contact surfaces between
the screws and the bone [19]. For the contact surfaces
between the fragments, it was assumed with a frictional
coefficient of 0.4 [20]. Axial forces of 100, 500, 1000, and
1500 N with a distribution of 60% to the medial com-
partment were applied to simulate the axial compressive
load on an adult knee [17, 21, 22] (Fig. 2e, f). The distal

Table 1 Parameters of the FE models

part of the tibia was constrained without displacement
(Fig. 2e).

Subsequently, the finite element models were imported
to Optistruct software (v13.0, Altair Engineering Inc.,
Troy, MI, USA) and performed the analysis process. In
our study, the equivalent maps of displacement and
stress of the fracture fixation models were output.

Relative displacement (RD) was calculated along the
fracture lines (the displacement of the triangular frag-
ment side minus the shaft side). Displacement of differ-
ent axes had an orientation. The positive directions of Z,
Y, and X axes were from distal to proximal, anterior to
posterior, and right to left.

Nodes/elements of SALF + ALP SPLF + ALP SPLF + PLP Nodes/elements of
Plate 88505/51456 88598/51534 12252/6388 Plate

Screws 104574/56866 105052/57238 23983/12455 Screws

Fragment 91983/58212 76939/49743 33405/20754 Fragment

Tibia shaft 829695/558153 837173/562653 466951/314994 Tibia shaft
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Results

Displacement of models

The maximal displacement values of the three fixations
under different loads are shown in Table 2. The displace-
ment of each complex increased parallelly with the
loads; the same was true for the equivalent maps; there-
fore, only the equivalent displacement maps of 500 N
for each fixation are displayed in Fig. 3. RD along the
fracture lines from L to M then to N are plotted as
curves which revealed the details of the fracture frag-
ments’ movements (Fig. 3b—d, f-h, j-1). L and M were
two border points of fracture lines at the articular
surface, and N was the lowest point of the triangle
fragment.

In 3D space (X, Y, and Z axes), the fixed fragments’
displacement showed heterogeneous. The maximal dis-
placement values of SALF + ALP under 500 N load were
0.120 mm (X axis), 0.013 mm (Y axis), -0.069 mm (Z
axis), respectively. On X and Y axes, the relative dis-
placement values from L to M were both positive num-
bers, while from M to N, they turned to negative
(Fig. 3b, ). On Z axis, the relative displacement value
was negative in most cases, except for around the M
point (Fig. 3d).

The maximal displacement values of SPLF + ALP under
500 N load were 0.151 mm (X axis), 0.028 mm (Y axis),
and -0.136 mm (Y axis). On X axis, the relative displace-
ment value decreased from L to a critical point which was
just below the point M, and then the relative displacement
value increased from this critical point to point N (Fig. 3f).
On Y axis, the relative displacement curve reversed com-
pared to X axis (Fig. 3g). On Z axis, the relative displace-
ment value decreased from point L to M, and then
increased gradually to the maximum at point N.

The maximal displacement values of SPLF + PLP under
500 N load were 0.024 mm (X axis), 0.019 mm (Y axis),
and -0.047 mm (Z axis). On X axis, the curve of relative
displacement was similar to that of SPLF + ALP (Fig. 3j);
while the curve in Y axis was quite different from that of

Table 2 Displacement values of different FE models
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SPLF + ALP, the maximum negative relative displacement
value was at the point between points L and M, and the
maximum positive displacement value was between points
M and N (Fig. 3k). On Z axis, the relative displacement
curve displayed “V” type, and the maximum negative
displacement value was close to point M (Fig. 3k).

Stresses in the fixation complex

The stress values under different loads are summarized
in Table 3. Logically, the stresses recorded in the fixation
complex increased with the axial force. By comparison,
the equivalent stress map of each fixation under differ-
ent axial forces showed a similar distributing character-
istic, and only the stress map of 500 N was presented
herein. Figure 4 shows the equivalent von Mises stress
of the three plate-screw systems and the max-shear
stress of the bone under 500 N load. For the plates of
SALF + ALP and SPLF + ALP, von Mises stress concen-
trated in the bent area just below the holes for raft
screws (Fig. 4a, d, g, j). The stress concentration was ob-
served on the middle section of the holes for raft screws
of SPLF + ALP (Fig. 3g). For the plate of SALF + ALP,
von Mises stress seemed to concentrate in the area sur-
rounding the holes (Fig. 4m, o, p). For the screws of all
the three fixations, the stresses were concentrated sur-
rounding the fracture lines on the screws (Fig. 4b, ¢, h, i,
n). The maximum max-shear stresses of the fracture
fragments were found at the screw holes near the frac-
ture surfaces (Fig. 4e, k, q). For the tibia shaft, stress
transmitted mostly by cortical bones, especially the med-
ial and posterior cortical bones (Fig. 4f, 1, r).

The maximum max-shear stresses of the trabecular
bones are summarized in Fig. 5, illustrating the possible
risk of trabecular fractures for each model under differ-
ent loads or motions.

Discussion
More attention should be paid on tibial plateau frac-
tures, especially on lateral plateau fractures, as lateral

SALF + ALP SPLF + ALP SPLF + PLP
Max displacement 100 N 500 N 1000N  1500N 100N 500 N T000N  1500N 100 N 500 N T000N 1500 N
(mm)
MAG 002531 012658 025315 037973 003936 0.19680 039360 059040 001078 005390 0.10780 0.16170
X 002392 011961 023922 035883 003011 0.15056 030112 045168 000478 002391 004782 007173
—0.00008 —0.00039 -0.00078 —0.00116 -0.00009 -0.00045 -0.00089 -0.00134 -0.00004 -0.00018 -0.00036 -0.00054
Y 000264 001322 002644 003966 000559 002793 005586 008379 000384 001922 003843 005764
000204 -001019 -0.02038 —0.03057 —0.00502 —-0.02512 -0.05024 -007536 -000011 -000056 —0.00112 —0.00168
Z 0.00482 002408 004816 007224 000590 0.02949 005897 008846 0.00046 0.00228 000456  0.00684
-001381 -006907 -0.13813 —0.20720 —002716 -0.13578 -027156 —040734 -000947 -004734 —0.09467 —0.14200
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Fig. 3 The results of displacement under 500 N axial stress. Total (a), X axis (b), Y axis (c), and Z axis (d) displacement and their RD curves of SALF + ALP;
total (e), X axis (f), Y axis (g), and Z axis (h) displacement and their RD curves of SPLF + ALP; total (i), X axis (j), Y axis (k), and Z axis (I) displacement and
their RDcurves of SPLF + PLP. Point L and M are two boundary points of tibia plateau along the fracture lines and point N is most distal point of the

fracture fragments

column would be affected by more than 60% of these
fractures [7, 8]. Our design of two plates in the
present study utilized the raft theory, resulting in a
more stable tibial plateau after ORIF, compared to the
normal plates. It has been demonstrated that the

space between the apex of fibular head and lateral
wall of plateau is sufficient for horizontal arm of the
plate passing through [23]. The plates were designed
as T shape. PLP was inclined with T shape, resulting
in a more adequate visualization of the plate’s shaft
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Table 3 Values of stress of different FE models
SALF + ALP SPLF + ALP SPLF + PLP
Max von Mises stress (MPa)
Plate 1.666 8329 16.658 24.986 3311 16.555 33.110 49.665 2.888 14.438 28876 43314
Screws 1.000 5.002 10.004 15.006 3.549 17.746 35493 53.240 2.596 12.982 25.965 38.947
Max-shear stress (MPa)
Fragment 0.196 0978 1957 2935 0.394 1.968 3.935 5.903 0.249 1.247 2494 3741
Tibia shaft 1.298 6492 12985 19477 0.790 3.950 7.900 11.850 0.691 3457 6914 10371

part when screw was inserted. ALP has two backward
screw holes. The two screws were crossed with the
raft screws, which can be used to fix posterior plateau
fragment. This structure could provide a stronger fix-
ation [13].

In the present study, FEA was employed to demon-
strate the strength of the three fixations and their char-
acteristics under axial stresses that could not be
observed by other mechanical test methods. In order to
achieve an accurate outcome, a quite small size of 2D
element (1 mm) was employed in these models. The
nodes and element numbers of 3D elements are shown
in Table 1, proving the veracity of our FE models as they
were sizable. The previous methods to assign materials
and properties for the cortical and trabecular bones were
troublesome and imprecise as artificial or semi-artificial
segmentation of different kinds of bone were required
[7, 24]. However, the method utilized in the present
study was a convenient way with the outcome shown in
Fig. 2g. As seen numerically, we obtained a model with
cortical and trabecular bones’ E-modulus similar to the
research reported previously [7, 17, 25]. The cortical
thickness differed from the tibial plateau to the shaft,
and the trabecular bone of the plateau and tibial medul-
lary cavity were assigned as different materials. These
results showed that our FE models were more precise
and closer to the reality than previous models, with a
homogeneous cortical thickness and trabecular bone as
a whole.

Overall, the maximum RDs achieved in the present
study were far below 2 mm, which is usually considered
clinically to evaluate if the reduction of a split tibial plat-
eau fracture succeed [7, 26]. Therefore, all the three fixa-
tions developed in the present study were judged
successful.

For the RD value and its curves of SALF + ALP, the
fracture fragment was found getting closed to the main
tibia part at the articular surface height under axial
stresses, while getting separated at the lower triangle of
fragment. The extrusion motion is considered as a good
result for fractures at the articular surface as it provides
a greater possibility of absolute stability and primary

bone healing [20]. However, when the articular surface
suffers a severe collapse or syntripsis, the extrusion mo-
tion may bring the dislocation of the small fragments
along the fracture line and therefore relative stability
without extrusion motion should be considered [20]. In
observations of SPLF + ALP and SPLF + PLP, although
they were both posterolateral fracture, the fracture frag-
ments moved in different ways. The triangular fragment
of SPLF + ALP was more likely to separate slightly from
the tibial shaft at the articular surface height, while it
was adverse of SPLF + PLP. Therefore, the ALP fitted
better the posterolateral fracture with a severe collapse
or syntripsis at the articular surface (Fig. 6a), while PLP
fitted well the posterolateral fracture with slight collapse
or a whole fragment (Fig. 6b). Motions of Z axial were
overall under 0.1 mm, which showed a perfect stiffness
of the fixations.

On the other hand, the stresses were compared to the
maximum resistance of the simulated materials. In all
the tests, the maximum von Mises stress of the implants
was 53.240 MPa, which was far smaller than the max-
imum resistance of 795 MPa (titanium alloy)[7]. No
bending or mechanical damage of the screws and plates
occurred.

Von Mises stress was concentrated around the con-
nection of proximal raft screws and the distal shaft
screws of ALPs so as to prevent the separation of
fragment. In SPLF + ALP, the stress was concentrated
on the middle section of the proximal raft screws as
the plate was placed across the fracture line. The
stress concentration occurred at the bottom, and cusp
of the shaft screws on ALPs was caused by the stress
transmitted by the two sides of cortical bone. Von
Mises stress on the implants of SPLF + PLP was con-
centrated on the junctions of the plate and the screws
with a relative homogeneous distribution on the plate.
This may be caused by the stress transmitted by the
lateral-side cortical bone. The stress concentrations
along the fracture lines were easy to be understood.

For the bones, the max-shear stress was calculated to
show the risk of trabecular microfracture. The maximum
max-shear stresses of the fracture fragments were found
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Fig. 4 The results of stresses. a-d Plate and screws von Mises stress of SALF + ALP. e, f Bone max-shear stress of SALF + ALP. g-j Plate and
screws von Mises stress of SPLF + ALP. e, f Bone Max-shear stress of SPLF + ALP. g—j Plate and screws von Mises stress of SPLF + PLP. k, | Bone
Max-shear stress of SPLF + PLP. m—p plate and screws von Mises stress of SPLF + PLP. g, r bone Maxshear stress of SPLF + PLP

at the screw holes near the fracture surfaces. Trabecular
microfracture may bring the screw loosening, leading to
the failure of ORIF. Carrera et al. have summarized that
the shear strength of trabecular bone might vary from
2.4 to 5.8 MPa [7]. It has been reported that the knee

joint axial stress ranged from 100 to 360% of body
weight during activities of daily living [27]. According to
these observations, our test load should be up to 2160 N
as the body weight of this patient was 60 kg. The max-
imal axial load we performed in the tests was 1500 N,
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Fig. 5 The Max-shear stress surround the screw holes and relation to the
trabecular bone shear strength. a Trabecular bone shear strength, 24-5.8
MPa. b Two legs standing, 600 N, 100% body weight. ¢ Flexion motions

(bending knee, sitting down, standing up), 1320-1560 N, 220-250% body
weight. d One leg standing, 1620 N, 270% body weight. e Up and down

the stairs, 1860-2100 N, 310-350% body weight

which might be an imperfection of our study. As shown
in Fig. 4, the SPLF + ALP had the highest risk of tra-
becular microfracture, suggesting the patient should
decrease taking the stairs and other drastic actions after
ORIF. Other fixations also had the risks of trabecular
microfracture, which needs further study.

Right

Fig. 6 Patients with posterolateral tibial plateau fragments. a
Posterolateral fracture with the articular surface suffering a severe
collapse or syntripsis. b Posterolateral fracture with slight collapse or
a whole fragment
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Conclusions

The two novel plates developed in the present study can
fix well lateral tibial plateau fractures involving antero-
lateral fragment and posterolateral fragments. Motions
after ORIF should be advised to decrease the risk of tra-
becular microfracture. The RD of the posterolateral frag-
ments was different when using ALP and PLP, which
should be considered in choosing the implants when
dealing with different posterolateral plateau fractures.
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