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Abstract
Introduction: This report presents a new imaging technique for non-invasive study of six degrees
of freedom (DOF) knee kinematics during treadmill gait.

Materials and methods: A treadmill was integrated into a dual fluoroscopic imaging system
(DFIS) to formulate a gait analysis system. To demonstrate the application of the system, a healthy
subject walked on the treadmill at four different speeds (1.5, 2.0, 2.5 and 3.0 MPH) while the DFIS
captured the knee motion during three strides under each speed. Characters of knee joint motion
were analyzed in 6DOF during the treadmill walking.

Results: The speed of the knee motion was lower than that of the treadmill. Flexion amplitudes
increased with increasing walking speed. Motion patterns in other DOF were not affected by
increase in walking speed. The motion character was repeatable under each treadmill speed.

Conclusion: The presented technique can be used to accurately measure the 6DOF knee
kinematics at normal walking speeds.

Introduction
Accurate data of six degrees-of-freedom (6DOF) knee kin-
ematics is instrumental for investigation of biomechani-
cal mechanisms of knee pathology such as osteoarthritis,
ligamentous injuries and total knee arthroplasty. Tradi-
tional gait analysis used multiple video cameras to track
the three-dimensional (3D) motions of reflective markers
fixed to the skin[1], which was limited to reveal relative
motion of the femoral and tibial bones. Invasive meth-
ods, such as using reflective markers directly fixed to bone
using a thin rod[2] or opaque markers embedded within
the bones, [3-7] were applied to detect bony motion in
order to eliminate the effect of skin motion and enhance

the accuracy of motion data. In another way, a point-clus-
ter technique, which is noninvasive, has also been pro-
posed to improve the traditional gait analysis method in
order to reduce the effect of relative motion of the skin
and bones[8].

Recently, fluoroscopic imaging technique, due to its rela-
tive accessibility, easiness to operate, and low radiation
dosage compared to traditional X-rays, has been used for
the analysis of knee joint motion during gait [9-11]. How-
ever, the use of just a single image might not detect knee
joint motion in the out-of-plane degrees-of-freedom in
the same accuracy as compared to the accuracy in in-plane
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motion[12,13]. In our laboratory, we validated the
method using the cine function of two fluoroscopes to
simultaneously capture dynamic knee joint motion[14].
This study presents how to use this technique to deter-
mine 6DOF knee joint motion during treadmill gait with
different speeds.

Methods
DFIS Setup
The dual fluoroscopic imaging system (DFIS) setup that
was validated previously is used for the treadmill gait
analysis (Fig. 1) [14,15]. The DFIS consists of two pulse
fluoroscopes (BV Pulsera, Philips) that are set to generate
8 ms width X-ray pulses with an effective dose of 13 mrem
per scanning. In this study, the fluoroscopes took 30
evenly distributed snapshot images per second during
dynamic knee joint motion.

The diameter of the image intensifier of the fluoroscopes
is ~310 mm. In general, given the size of the image inten-
sifier of the fluoroscopes might be difficult to capture the
entire range of knee motion during the treadmill gait.
Therefore, the two fluoroscopes are positioned so that
their intensifiers form an angle between 120 and 130°
(Fig. 1). In this setup, the dual fluoroscopic system has a
common field of view with a length of ~450 mm. There-
fore, the entire knee motion could be captured by both
fluoroscopes during the gait cycle.

Treadmill gait
To demonstrate the methodology of treadmill gait analy-
sis, one healthy subject (male, 45 years old) performed
gait on the treadmill at different speeds: 1.5, 2.0, 2.5 and
3.0 mile/hour MPH (or 0.67, 0.89, 1.12 and 1.34 m/s,
respectively). Two laser-positioning devices were attached
to the two fluoroscopes to help the subject align the target
knee (left) within the field of view of the fluoroscopes

during gait with the assistance of a technician. The knee
was then imaged from heel strike to toe-off during three
consecutive strides after about 30 seconds of practice. The
subject took 5 minute rest after testing for each speed.

Reproduction of in-vivo knee kinematics
The anatomic model of the target knee, including the
bony geometry of the tibia and femur, was reconstructed
by tracing the bony contours on sagittal plane magnetic
resonance (MR) images of the knee in solid modeling
software (Rhinoceros®, Robert McNeal & Associates, Seat-
tle, WA). The MR images were obtained using a 3.0 Tesla
MR scanner (MAGNETOM® Trio, Siemens, Erlangen, Ger-
many) while the subject was lying supine with the knee in
a relaxed, extended position. The MR scanner employed a
3D double echo water excitation sequence and the follow-
ing parameters: field-of-view = 160 × 160 × 120 mm,
voxel resolution = 0.31 × 0.31 × 1.00 mm, time of repeti-
tion (TR) = 24 ms, time of echo (TE) = 6.5 ms, and flip
angle = 25°. A joint coordinate system described previ-
ously (Fig. 1B) was adopted to determine the 6DOF knee
joint kinematics [16].

The model and the dual fluoroscopic images were placed
into a virtual DFIS environment where the in-vivo posi-
tions of knee were reproduced by matching projections of
the models to their outlines on the fluoroscopic images
[12]. The knee positions during three strides at each tread-
mill speed were reproduced. For each stride, the knee
position was analyzed at each 10% of the stance phase
from heel strike to toe-off.

The average speed of the knee during stance phase was cal-
culated by dividing the maximal traveling distance by the
corresponding traveling time. The data on 6DOF knee
kinematics, including knee flexion, internal-external tibial
rotation, as well as medial-lateral translation and varus-

(A) Setup of the DFIS system and a treadmillFigure 1
(A) Setup of the DFIS system and a treadmill. (B) Knee model and virtual DFIS environment for reproduction of in-vivo 
knee kinematics. A typical knee model is shown after reproducing its position in the virtual environment of the modeling soft-
ware.
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valgus rotation, were analyzed. The repeatability of the
treadmill gait was determined by the standard deviation
of the three strides of each treadmill speed.

Results
The duration of the stance phase decreased with the tread-
mill speed (Fig. 2). At 1.5 MPH, the stance phase time was
0.99 second, while at treadmill speed of 3.0 MPH, the
stance phase time decreased to 0.49 second. The average
speed of the knee during stance phase was lower than the
treadmill speed (Fig. 2). At 1.5 MPH treadmill speed, the
knee speed was 0.28 ± 0.02 m/second, only 41% of the
treadmill speed. At 2.5 MPH treadmill speed, the knee
speed was 0.39 ± 0.05 m/second that was 35% of the
treadmill speed. At 3.0 MPH treadmill speed, the knee
speed was 0.81 ± 0.02 m/second that was 60% of the
treadmill speed.

Knee kinematics under different treadmill speeds showed
similar patterns in both, the rotations and the translations
(Fig. 3). After heel strike, the tibia showed an increase in
flexion angle to 6.71 ± 0.86° and 13.81 ± 2.73° and an
increase in internal tibial rotation to 4.56 ± 0.29° and
5.45 ± 0.76° for the treadmill speeds of 1.5 MPH and 3.0

MPH, respectively (Fig. 2B). During mid-stance, the knee
showed maximal hyperextension of about -2.5° and
external tibial rotation of about -1.5° at all speeds. At toe-
off, the knee had flexion angles of 43.05 ± 2.18° and
52.35 ± 5.09° and internal tibial rotation of 4.73 ± 0.35°
and 7.56 ± 1.50° for treadmill speeds of 1.5 and 3.0 MPH,
respectively. The knee also showed an increase in valgus
rotation after heel strike, a decrease in valgus rotation dur-
ing stance phase and sharper increase in valgus rotation at
toe-off (Fig. 2B and Fig. 3C).

Femoral translations during gait at different speeds
showed similar patterns (Figs. 3D and 3E). The femur
translated anteriorly during loading response and early
midstance and moved posteriorly thereafter until termi-
nal stance when it shifted anteriorly again. In medial-lat-
eral direction, the femur moved laterally during early
stance and medially towards toe-off.

Discussion
This paper introduced the technique of using the DFIS for
measurement of 6DOF in-vivo knee kinematics during
treadmill gait. The data showed that this technique is fea-
sible to analyze the dynamic knee motion during a wide

Top: Average speed of the knee and duration of the stance phase of gait on treadmill at four different walking speedsFigure 2
Top: Average speed of the knee and duration of the stance phase of gait on treadmill at four different walking 
speeds. Bottom: Peak kinematic values of the knee during different intervals of the stance phase. F/E: flexion (+)/extension(-
); IR/ER: internal(-)/external(+) femoral rotation; A/P: anterior(+)/posterior(-) femoral translation; ML: medial(-)/lateral(+) fem-
oral translation; SD: standard deviation.
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range of treadmill speeds (up to 3 MPH). Since this tech-
nique reproduced the knee positions using 3D anatomic
models of the knee, 6DOF tibiofemoral joint kinematics
during gait can be obtained.

Few studies have utilized fluoroscopes to investigate
human knee motion during gait [17]. For example, Zihl-
mann et al. [17] moved a fluoroscope to follow the knee
motion to overcome the limited field of view of the image
intensifier. They estimated an accuracy of 0.2 mm for in-

plane translation and of 3.25 mm for out-plane transla-
tion and an accuracy of 1.57° for rotation in a knee after
total joint arthroplasty during level walking. To overcome
the limitation of the image intensifier size in the DFIS set
up, the two fluoroscopes are positioned so that their com-
mon image zone covers the knee motion during the com-
plete gait cycle on a treadmill [14].

The DFIS has been recently validated to measure dynamic
knee motion [14]. Using standard geometry, the sphere
positions could be determined with a SD below 0.2 mm
when sphere moved at a speed up to 0.5 m/second. The
dynamic validation using cadaveric knees, demonstrated
that the DFIS on average has an accuracy of less than 0.15
mm and 0.1 mm/s in determining translation and veloc-
ity, respectively. Varadarajan et al. [15] demonstrated that
the DFIS can measure translation in knee after total joint
arthroplasty with an accuracy of less than 0.4 mm at a
speed of 0.5 m/s. The accuracy of the DFIS depends on the
speed of the moving joint.

The data of this paper revealed that the knee traveling speed
is lower than the treadmill speed (Fig. 2). At the treadmill
speed of 2.5 MPH, the knee speed during stance phase is
less than 0.4 m/second, while at treadmill speed of 3.0
MPH, the knee speed is about 0.8 m/second. Our data also
showed that with increasing speed, the amplitude of knee
flexion during stance phase increases. This finding is in
agreement with other studies in the literature [18-21].
Treadmill gait was also shown to be repeatable across the
multiple strides as indicated by the standard deviation cal-
culated from three strides at each treadmill speed.

The pulse imaging character of the fluoroscopes is an
important factor for analyzing treadmill gait. In a pulsed
fluoroscopic system such as the one used in our set up, the
pulse width and frame rate are decoupled parameters. The
inverse of frame rate corresponds to time difference
between two consecutive images, whereas pulse width
corresponds to excitation time for each image. If the rate
at which pulses are generated is matched to the rate of
acquisition then each image corresponds to a pulse. In
this case, pulse width limits the image quality for a given
frame rate. Theoretically, the maximal pulse rate (and
matched frame rate) is limited by the pulse width. There-
fore, a pulse width of 8 ms has a maximum frame rate of
125 frames/second, which is higher than the recom-
mended minimal frame rate of 60 frames/second for gait
analysis. However, a reduced rate of image capture (e.g. 15
or 30 pulses/second and matched frame rates) can be
employed to limit unnecessary radiation exposure and
data processing without adversely affecting image quality.
This is because the image quality is actually related to
pulse width even though fewer images are taken. There-
fore, we could chose to use 15 or 30 pulses/second in our
application, depending on the moving speed of the joint.

In-vivo knee kinematics during the stance phase of gait on the treadmillFigure 3
In-vivo knee kinematics during the stance phase of 
gait on the treadmill. The data for translations and inter-
nal-external rotation represent motion of the femur with 
respect to the tibia. The kinematic values are charted as func-
tion of time [sec].
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In summary, this paper introduced the DFIS technique for
measurement of 6DOF in-vivo knee kinematics during
treadmill gait. The technique showed feasibility to analyze
the dynamic knee motion during wide range of walking
speeds (up to 3 MPH). The fluoroscopic system has a low
radiation dosage, is non-invasive, and can be constructed
using any pair of readily available fluoroscopes. Since this
technique reproduced the knee positions during gait
using 3D anatomic models of the knee, 6DOF tibiofemo-
ral joint kinematics can be accurately obtained. This tech-
nique can be used as an alternative option for treadmill
gait analysis in healthy, injured, and surgically treated
knees.
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