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Abstract
Background: Lag screw cut-out failure following fixation of unstable intertrochanteric fractures
in osteoporotic bone remains an unsolved challenge. This study tested if resistance to cut-out
failure can be improved by using a dual lag screw implant in place of a single lag screw implant.
Migration behavior and cut-out resistance of a single and a dual lag screw implant were
comparatively evaluated in surrogate specimens using an established laboratory model of hip screw
cut-out failure.

Methods: Five dual lag screw implants (Endovis, Citieffe) and five single lag screw implants (DHS,
Synthes) were tested in the Hip Implant Performance Simulator (HIPS) of the Legacy Biomechanics
Laboratory. This model simulated osteoporotic bone, an unstable fracture, and biaxial rocking
motion representative of hip loading during normal gait. All constructs were loaded up to 20,000
cycles of 1.45 kN peak magnitude under biaxial rocking motion. The migration kinematics was
continuously monitored with 6-degrees of freedom motion tracking system and the number of
cycles to implant cut-out was recorded.

Results: The dual lag screw implant exhibited significantly less migration and sustained more
loading cycles in comparison to the DHS single lag screw. All DHS constructs failed before 20,000
cycles, on average at 6,638 ± 2,837 cycles either by cut-out or permanent screw bending. At failure,
DHS constructs exhibited 10.8 ± 2.3° varus collapse and 15.5 ± 9.5° rotation around the lag screw
axis. Four out of five dual screws constructs sustained 20,000 loading cycles. One dual screw
specimens sustained cut-out by medial migration of the distal screw after 10,054 cycles. At test end,
varus collapse and neck rotation in dual screws implants advanced to 3.7 ± 1.7° and 1.6 ± 1.0°,
respectively.

Conclusion: The single and double lag screw implants demonstrated a significantly different
migration resistance in surrogate specimens under gait loading simulation with the HIPS model. In
this model, the double screw construct provided significantly greater resistance against varus
collapse and neck rotation in comparison to a standard DHS lag screw implant.
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Introduction
Operative treatment for hip fractures was introduced in
the 1950s with the expectation of improved functional
outcome and a reduction of the complications associated
with immobilisation and prolonged bed rest [1-3].

Since then a variety of different implants has been used
either extramedullary or intramedullary in nature. The
most commonly used extramedullary implant is the slid-
ing hip screw (SHS) with side plate. It is currently consid-
ered the gold standard for fixation of extracapsular hip
fractures as well as the implant that any new design
should be compared with [4-6].

The SHS has been shown to produce good results; how-
ever, complications are frequent, particularly in unstable
fractures [7-9].

Post-operative implant-related complications have been
reported in a recent meta-analysis of 16 studies. Risks
ranged from 0 to 23% (median 6%) in patients treated
with intramedullary devices and from 0 to 7% (median
3%) in patients treated with SHS devices [10]. The most
common cause of failure is reported to be varus collapse
and cutting-out of the lag screw through the femoral head
[11,12].

Intramedullary (IM) implants have been associated with
an increased risk of intraoperative and postoperative
femur fractures compared with sliding hip screws [13-16].
This increased fracture incidence has been linked to stress
concentration at the tip of the IM nail, stress concentra-
tion at the distal locking bolt, and reaming of the proxi-
mal femur to accommodate the increased proximal
diameter of the nail necessary to allow a large diameter lag
screw to pass through the nail [13,17-19].

Recently, IM nails have been introduced that employ two
small-diameter lag screws that enable a smaller diameter
of the proximal nail segment [20,21]. The decreased prox-
imal nail diameter requires less, or even no reaming of the
proximal femur and potentially lowers the incidence of
iatrogenic proximal femur fracture. Furthermore, two
proximal screws theoretically provide greater rotational
control of the femoral head fragment than a single screw
[20,22]. There are concerns, however, that the smaller
diameter screws would be more prone to migration
through the femoral head and increase the incidence of
screw cut-out [20].

In a biomechanical comparison by Erik N Kubiak et al.
between a dual, trochanteric antegrade nail (TAN) and a
single lag screw implant (intramedullary hip screw
IMHS), the two constructs showed equivalent rigidity and
stability in all parameters. The dual screw implant had a
significantly greater ultimate failure load [23]. Mickael

Ropars et al. in a recent study, compared two minimally
invasive implants; one with dual, and one with single
cephalic lag screws [24]. They concluded that both
implants have biomechanical properties which are as
favourable as conventional hip screws, and that loading
and mode of failure were found to be similar. In both
studies and for static and cyclic loading the specimens
were only loaded in the vertical direction. They did not
accounted for the multi-planar loading seen by the hip
during level walking. However it is well known that the
implant-bone interface is subjected to combine axial and
torsion loading during walking that seems to significantly
affect the lag screw migration [25].

Larry Ehmke et al. developed a hip implant performance
simulator (HIPS) that can reproduce the dynamic multi-
planar hip forces seen during level walking. Their HIPS
system evaluates lag screw migration in a pertrochanteric
fracture model under more physiologic loading condi-
tions. They chose the biaxial rocking motion (BRM) tech-
nology to simulate multi-planar forces with a loading
protocol accounting for hip flexion-extension, ab-adduc-
tion and a double peak load history. The so-called BRM
design is the most commonly used wear test device for
prosthetic hip joints [25-28].

To our knowledge, fixation strength of double-screw hip
implants has not been tested in a laboratory cut-out sim-
ulator under dynamic multi-plantar loading to determine
if an additional screw does provide significantly improved
migration resistance as compared to a standard single
screw implant. This study therefore investigated the
migration behaviour and cut-out resistance of a novel
double lag screw implant in comparison to a commonly
used single lag screw implant under physiologic multi-
planar loading in an established laboratory model
[29,30].

Methods
Implants
As the gold-standard for single lag screw implants, five
dynamic hip screws (DHS, Synthes, West Chester, PA)
made of stainless steel were tested. The DHS lag screws
had a shaft diameter of 7.8 mm and an outer thread diam-
eter of 12.5 mm (Figure 1a). To investigate if a dual lag
screw implant can provide greater migration resistance,
five pairs of Cephalic Screws of a cephalomedullary device
(Endovis, Citieffe, Italy) made of titanium were tested.
The lag screws had a shaft diameter of 7.5 mm and an
outer thread diameter of 9.7 mm. They had a self-drilling
and self-tapping screw tip design (Figure 1b).

Surrogate Specimens
Lag screw fixation was tested in surrogate femoral head
and neck specimens of 50 mm diameter machined from
cellular polyurethane foam (#1522-11, Pacific Research
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Inc., Vashon, Washington, USA). These specimens had a
density of 12.5pcf (0.2 g/cm3) with 4 MPa compressive
strength and 48 MPa elasticity modulus (E-modulus) to
simulate mildly osteoporotic bone, as validated in a pre-
vious study [30]. These material properties correspond to
the osteoporotic range of human cancellous bone, with
2–21 MPa compressive strength and 5–104 MPa E-modu-
lus [31,32]. Surrogate specimens were used as a cancellous
bone substitute to maximize result reproducibility
[29,30]. The surrogate specimens were placed in a 6 mm
thick, polished steel shell to provide a rigid, spherical
interface for delivery of dynamic loading.

Implant Insertion
All implants were inserted according to the manufac-
turer's guidelines. For DHS lag screws, surrogate speci-
mens were reamed but not tapped. The lag screw was
placed centrally within the femoral head surrogate and
advanced to a depth leaving 20 mm tip-to-apex distance
(TAD) [33]. This corresponds to a 10 mm distance of the
screw tip to the femoral head apex in both the antero-pos-
terior and lateral radiographic view. The two cephalic
screws were inserted without pre-drilling, reaming or tap-
ping. Both screws were inserted to the same depth, yield-
ing a TAD distance of the superior screw of 20 mm (Figure
2). Accurate screw insertion was supported by a custom-
made insertion guide, to ensure proper distance of the

screws to each other and proper location within the fem-
oral head surrogate.

Experimental Setup
Specimens were transferred for testing in the HIPS of the
Legacy Biomechanics Laboratory [29]. This model has
been validated for simulation of lag screw migration and
cut-out in a clinically relevant worst-case scenario,
accounting for osteoporotic bone, an unstable intertro-
chanteric fracture (OTA classification 31-A.2), and gait-
cycle loading (Figure 3a). The base fixture of the HIPS sys-
tem modeled a femoral shaft with its anatomic axis
aligned perpendicular to the horizontal plane. The proxi-
mal aspect of the base fixture was designed to simulate a
pertrochanteric fracture line oriented 40° to the anatomic
axis of the femoral shaft (Figure 3b). The back plate of the
femoral head steel shell had a 40 mm diameter hole to
ensure unconstrained shear translation of the lag screw
shaft in the femoral neck. This back plate rested against a
polyethylene support attached to the base plate, reproduc-
ing the constraints characteristic of a reduced, but unsta-
ble pertrochanteric fracture. Specifically, this support
simulated abutment of the fracture surfaces after comple-
tion of lag screw sliding, while still allowing femoral head
varus collapse and rotation, as in the case of an unstable
fracture with deficient posteromedial neck support. To
replicate clinically relevant sliding conditions, the clamp-

a) DHS single lag screw, and b) Endovis dual lag screws with self-drilling and self-tapping screw tipFigure 1
a) DHS single lag screw, and b) Endovis dual lag screws with self-drilling and self-tapping screw tip.
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ing part in the base plate incorporated either, the barrel
and side-plate, in case of the DHS, or the section of the
cephalomedullary nail with the two support holes for the
lag screws.

Loading
BRM, representative for level walking, was produced using
concurrent axial loading and rotational displacement con-
trolled by a biaxial material test system (Instron 8874,
Canton, Massachusetts, USA). A dynamic, double-peak
loading regimen of 1.45 kN peak load approximating two
times bodyweight was applied at 1 Hz to the steel shell
over a polyethylene meniscus. The meniscus traced a path
on the femoral head similar to the path of resultant force
vectors during level walking. Concurrent flexion-exten-
sion and abduction-adduction motion were superim-
posed by sinusoidal rotation of a 23° inclined block

affixed to the actuator (Figure 3b). This 23° incline
accounted for an 18° resultant joint load vector, plus 5°
of valgus of the femoral shaft axis. Exaggerated walking
kinematics of the left limb was simulated by ± 75° rota-
tion of the actuator, which resulted in a 45° arc of flexion-
extension and a 17° arc of ab-adduction. Implants were
exercised either until failure or up to 20,000 load cycles,
whichever occurred first.

Outcome Measures
Three dependent outcome variables were reported, one of
which describes the cut-out resistance (NF), while the
remaining two (αNeck, αVarus) describe the migration kine-
matics. The number of load cycles to implant failure, NF,
was registered by the material test system. Cut-out failure
was detected by means of electrical conductivity between
the implant and the steel shell, which triggered an instan-

Positioning of Endovis cephalic screws in the femoral head/neck surrogate, shown in association with proximal nail segment and base fixtureFigure 2
Positioning of Endovis cephalic screws in the femoral head/neck surrogate, shown in association with proximal 
nail segment and base fixture.
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taneous stop of the test system to preserve the cut-out
stage. Femoral head migration kinematics was analyzed in
terms of varus collapse (αvarus) and rotation around the
neck axis (αneck). These migration kinematics data were
continuously recorded with an electromagnetic motion
tracking system (PcBird, Ascension Tech., Burlington, Ver-
mont, USA). To suppress distortion of motion tracking
data by ferromagnetic interference, a non-ferrous experi-
mental platform and actuator extension was imple-
mented. Additionally for dual screws implants, the
migration of lag screws in axial direction was assessed by
measuring their position with a digital caliper before and
after testing.

Statistical Analysis
Differences in migration αNeck and αVarus between
implants were tested at discrete time points during the
loading history at a confidence level of α = 0.05 using two-
tailed Student's t-tests for unpaired samples.

Results
Lag Screw Cut-Out
All DHS implants failed before 20,000 loading cycles, on
average after 6,638 ± 2,837 cycles. Two out of five DHS
specimens failed due to implant cut-out after 11,161 and
4,486 cycles (Figure 4a). The remaining three DHS
implants exhibited lag screw bending in absence of cut-

HIPS model for testing of lag screw fixation strengthFigure 3
HIPS model for testing of lag screw fixation strength: a) unstable fracture model; and b) HIPS base fixture, shown in 
cross-sectional view and in assembly with material test system for application of biaxial rocking motion representative of hip 
loading during level walking.

Lag screw failure modesFigure 4
Lag screw failure modes: a) DHS varus collapse and subsequent cut-out failure, b) lag screw bending in absence of cut-out, 
and c) axial migration of distal Endovis screw, leading to cut-out despite minimal varus collapse.
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out failure after on average 5,848 ± 1,616 cycles (Figure
4b). Four out of five dual screws implants sustained
20,000 loading cycles. Only one dual screws implant
exhibited cut-out by medial migration of the inferior
screw, which occurred after 10,054 load cycles. No bend-
ing was observed in dual lag screws (Figure 4c).

Migration
At failure, DHS implants migrated on average to αvarus =
10.8° ± 2.3° and αneck = 15.5° ± 9.5°. Migration in dual
Cephalic screws advanced to αvarus = 3.7° ± 1.7° and αneck
= 1.6° ± 1.0° after completion of 20,000 cycles or at fail-
ure. In addition, axial migration of dual screws was
observed. The proximal and distal screws migrated medi-
ally by on average 0.3 ± 0.8 mm and 4.9 ± 3.0 mm medi-
ally, respectively.

Histories of the average migration were calculated for each
implant, specific for αvarus (Figure 5) and to αneck (Figure
6). Endpoints of the average migration histories represent
the last average data point, collected at the earliest failure
among the individual tests. The double screw construct
was more stable than the DHS in both αvarus and αneck.
Dual screws implants demonstrated consistently less
varus collapse, which was significantly below that of DHS
implants at and after 300 loading cycles. Average neck
rotation histories were based on absolute neck rotation,
since the direction of neck rotation appeared to be ran-
dom. After the third loading cycle, neck rotation was sig-
nificantly lower in Endovis implants as compared to DHS
implants.

Discussion
There are previous published biomechanical studies
[23,24] that directly compared the stability of single and

dual lag screw implants used for treatment of intertro-
chanteric hip fractures. The authors of these prior studies
concluded that the two constructs showed equivalent
rigidity and stability, that biomechanical properties were
as favourable as conventional hip screws, and that the
dual lag screw implants had a greater ultimate failure
load. However their loading parameters in these prior
studies did not reflect the physiological forces that act on
the hip during level walking since loading was applied to
the specimens uni-axially in the coronal plane. Coronal
plane loading represents the forces across the hip in single
leg stance of the gait cycle [34]. The HIPS model was spe-
cifically designed to simulate loading vectors experienced
by the proximal femur during ambulation [29]. It
employs BRM, a well-validated protocol for producing
hip motion using a dynamic, multi-planar double peak
loading regimen. Ehmke et al. demonstrated that, cut-out
mechanisms differed between multi-planar BRM loading
and uni-axial loading. Only the BRM loading model
resulted in cut-out that occurred by combined varus col-
lapse and neck rotation. Moreover, they found that the
initial motion was rotation about the lag screw, followed
by varus collapse [29].

The DHS lag screws were placed in near perfect position,
according to Baumgaertner et al. [33] with a tip-to-apex
distance of 20 mm to 32 mm, depending on whether the
steel shell is considered part of the articular layer, or part
of the femoral head, respectively. According to the same
principles, the proximal Endovis screw was placed closer
to the central axis of the femoral head leaving space in the
distal third of the femoral head and neck for the distal
screw. The tip-to-apex distance was 20 mm for the proxi-
mal and 23 mm for the distal screw. This relatively eccen-
tric placement of the Endovis screws preserves bone stock

Progression of varus collapse under dynamic loading for sin-gle (DHS) and double (Endovis) lag screw constructsFigure 5
Progression of varus collapse under dynamic loading 
for single (DHS) and double (Endovis) lag screw con-
structs.

Progression of femoral head rotation around the lag screw under dynamic loading for single (DHS) and double (Endovis) lag screw constructsFigure 6
Progression of femoral head rotation around the lag 
screw under dynamic loading for single (DHS) and 
double (Endovis) lag screw constructs.
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in the upper part of the femoral head which may further
improve cut-out resistance.

Both implants were inserted into the surrogate specimens
according to the manufacturer's instructions using the
suggested instrumentation in the same manner as in real
surgery. Differences in insertion methods between the two
implants are due to differences in design of the implant's
tip. The two cephalic screws had a self drilling and shelf
taping design. It is known that insertion torque and pull-
out forces for these screws are similar to pre-tapped screws
[35]. Moreover there are no data from the literature to
support that such differences in insertion methods may
have influenced the cut-out resistance of our screws in
order to affect our results. In a recent biomechanical com-
parison of conventional DHS and DHS Blade the authors
noticed an enhanced cut out resistance of the DHS Blade.
The main difference between the two implants was the
implantation technique, pre-drilling for the DHS and
impaction for the blade. They suggested that the underly-
ing mechanism for improved purchase of the blade
implant is unclear, but bone-compaction is deemed to
play a major role. However they finally concluded that
maximizing the bone content around the implant forgo-
ing pre-drilling does not necessarily enhance the cut-out
resistance, since mainly elastic deformation seems to con-
tribute to the implant anchorage. The importance of the
implantation technique with or without pre-drilling is
therefore decreased [36].

In addition to differences in insertion between screws,
there are some small differences in the geometry of the
screws as well. It is accepted that implant development
and design remains a major approach in the efforts for
developing superior treatment concepts for osteoporotic
proximal femur fractures [37]. A plethora of published
biomechanical studies have attempted to define the opti-
mum shape and size of the ideal implant for these chal-
lenging fractures. It is obvious that this ideal implant is
still unknown up to date since cut-out remains one of the
major clinical challenges in the field of osteoporotic prox-
imal femur fractures [38]. With these thoughts in mind
the small differences in shaft diameter, and outer thread
diameter of our implants, in relation to fixation strength
and migration, is extremely difficult to investigate. The
only parameter, in our model that can explain the supe-
rior biomechanical properties of dual cephalic screws
seems to be the presence of the second screw, which can
better control torsional forces.

Clinical studies have consistently failed to find significant
differences between implant designs with regard to lag
screw cut-out [11,39,40]. The clinical incidence of
implant-related cut-out is masked by the high variability
in bone quality, fracture pattern, quality of reduction, and

implant placement. Using surrogate specimens in a con-
trolled laboratory model provided sufficient reproducibil-
ity to enable detection of significant differences in
migration resistance between the two implants tested.
Similarity in migration kinematics and cut-out failure
modes between cadaveric and surrogate specimens tested
in the HIPS simulator has been demonstrated previously
[29], and further supports the relevance of the present
findings obtained within surrogate specimens.

The fixation strength of the dual lag screw construct was
found to be significantly greater than the classic DHS
when multidirectional dynamic forces were used for load-
ing. In their biomechanical study, Kubiak et al. found that
TAN, a dual lag screw intramedullary implant, provided
significantly stronger fixation than the IMHS when loaded
to failure in an unstable intertrochanteric hip fracture
model [23]. These findings support Ingman's contention
that the increased rotational control of the femoral head
afforded by two screws would decrease femoral head cut-
out [21]. In the present study, the double screws con-
structs demonstrated significantly less rotation (1.2°)
than the DHS constructs (15.8°). Assuming that rotation
about the femoral neck contributes to a loss of reduction
and fixation stability, the superior rotational stability of
dual screws implants may therefore be in part responsible
for its increased resistance to varus migration and cut-out
failure.

All DHS implants failed before 20,000 loading cycles, on
average after 6,638 ± 2,837 cycles. Three out of five DHS
specimens experienced implant bending before produc-
ing cut-out. Ehmke et al. utilized the HIPS system and
found that all implants tested survived 20,000 cycles in
bone surrogates. A basic difference between the present
study and that of Ehmke's was the mechanical characteris-
tics of the implants each study tested. Ehmke et al. tested
a gamma nail lag screw with 12 mm shaft and 12 mm
outer thread diameter in contrast to our study that tested
the classic DHS lag screw with only 7.8 mm shaft and 12.5
mm outer thread diameter. Implant bending of DHS
screws has been very rarely reported in clinical studies.
However, in biomechanical studies it has been reported
that the failure mode associated with the DHS lag screw in
hard bone was screw bending rather than cut-out [8].
Bending is highly unusual and rarely if ever seen in oste-
oporotic patients and someone may say that our model is
questionable at best. It is true that the surrogate foam cho-
sen for our test proved to be harder that we expected.
Moreover in biomechanical studies the high load levels
such as 1.45 kN peak, or two times body weight, were cho-
sen to reliably induce onset of implant migration within a
clinically realistic number of loading cycles for each of the
implants tested. When loading remained below a certain
threshold, initiation of implant migration did not occur
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for a prolonged amount of time, during which fracture
healing can occur clinically. Implant bending is therefore
very rare in clinical practice but not so unusual in biome-
chanical studies.

However the critical point of our study is the amount of
migration measured that is directly related to the fixation
strength of the implants. Even in these "mild oste-
oporotic" surrogates dual screw implants shows superior
stability compared to the classic DHS implants, and the
measurements were comparable and reproducible.

An important result of dual lag screws is the substantial
amount of axial medial migration of the inferior screw
that was noted after 10,054 load cycles. The axial migra-
tion of lag screws has been described as the "Z effect" phe-
nomenon [41]. This is a rarely reported mechanism of
implant failure of the femoral neck element and has been
described primarily for two-screw devices such as the
proximal femoral nail (PFN, Synthes, Switzerland) [41].
The incidence of this phenomenon remains unknown
and the biomechanical explanation for the medial migra-
tion of the femoral neck element has not been elucidated
in the literature [42].

In our model both screws migrated medially by on aver-
age 0.3 ± 0.8 mm for the superior screw and substantially
more (4.9 ± 3.0 mm) for the inferior screw. However only
one inferior screw exhibited cut-out by medial axial
migration, which occurred after 10,054 load cycles. To
prevent the "Z effect" in clinical practice, Jinn Lin [43]
emphasized inserting the inferior lag screw as close as pos-
sible to – or even right on – the inferior cortex of the fem-
oral neck. Doing so could prevent this phenomenon and
could also increase the bone mass to resist screw cut-out.

Limitations to the HIPS system must be recognized. Our
neck constraint assumed that the fracture had undergone
maximum collapse, but had not begun migration of the
lag screw. This assumption has precedence in a study by
Friedl and Clausen, which used neck constraints similar to
those used in the HIPS model to simulate OTA 31-A3 per-
trochanteric fractures [44]. Additionally, we did not load
all specimens to failure, but ceased loading at 20,000
cycles. Our previous studies have clearly shown that the
onset and pathway of migration is a more sensitive tool to
determine fixation strength than cut-out [29,30]. As a fur-
ther limitation, results of our study only describe implant
performance in regard to cut out failure in absence of frac-
ture healing and do not take into account alternative fail-
ure modes. A prospective randomized clinical trial would
be required in order to determine if these favorable bio-
mechanical results of double screw implants can be repro-
duced in clinical practice.

In conclusion, double screw construct provided signifi-
cantly greater resistance against varus collapse and neck
rotation in comparison to the gold-standard DHS implant
when tested in the HIPS model under conditions repre-
sentative of an unstable fracture and mild osteoporotic
bone.
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