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Abstract 

Objective The study aims to evaluate the accuracy of an MRI-based artificial intelligence (AI) segmentation cartilage 
model by comparing it to the natural tibial plateau cartilage.

Methods This study included 33 patients (41 knees) with severe knee osteoarthritis scheduled to undergo total knee 
arthroplasty (TKA). All patients had a thin-section MRI before TKA. Our study is mainly divided into two parts: (i) In 
order to evaluate the MRI-based AI segmentation cartilage model’s 2D accuracy, the natural tibial plateau was used 
as gold standard. The MRI-based AI segmentation cartilage model and the natural tibial plateau were represented 
in binary visualization (black and white) simulated photographed images by the application of Simulation Photogra-
phy Technology. Both simulated photographed images were compared to evaluate the 2D Dice similarity coefficients 
(DSC). (ii) In order to evaluate the MRI-based AI segmentation cartilage model’s 3D accuracy. Hand-crafted cartilage 
model based on knee CT was established. We used these hand-crafted CT-based knee cartilage model as gold stand-
ard to evaluate 2D and 3D consistency of between the MRI-based AI segmentation cartilage model and hand-crafted 
CT-based cartilage model. 3D registration technology was used for both models. Correlations between the MRI-
based AI knee cartilage model and CT-based knee cartilage model were also assessed with the Pearson correlation 
coefficient.

Results The AI segmentation cartilage model produced reasonably high two-dimensional DSC. The average 2D DSC 
between MRI-based AI cartilage model and the tibial plateau cartilage is 0.83. The average 2D DSC between the AI 
segmentation cartilage model and the CT-based cartilage model is 0.82. As for 3D consistency, the average 3D DSC 
between MRI-based AI cartilage model and CT-based cartilage model is 0.52. However, the quantification of cartilage 
segmentation with the AI and CT-based models showed excellent correlation (r = 0.725; P values < 0.05).

Conclusion Our study demonstrated that our MRI-based AI cartilage model can reliably extract morphologic features 
such as cartilage shape and defect location of the tibial plateau cartilage. This approach could potentially benefit clini-
cal practices such as diagnosing osteoarthritis. However, in terms of cartilage thickness and three-dimensional accu-
racy, MRI-based AI cartilage model underestimate the actual cartilage volume. The previous AI verification methods 
may not be completely accurate and should be verified with natural cartilage images. Combining multiple verification 
methods will improve the accuracy of the AI model.
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Introduction
Knee osteoarthritis (KOA) is a prevalent type of degen-
erative joint disease with multiple contributing factors, 
potentially resulting in functional impairment [1]. Early 
detection and accurate measurement of cartilage mor-
phology and composition changes are crucial for effec-
tively treating KOA [2]. Magnetic resonance imaging 
(MRI) provides enhanced visualization of cartilage mor-
phology, making it the preferred modality for assessing 
cartilage damage and accurately detecting morphological 
changes [3]. Numerous observational and interventional 
studies [4–6] have used semi-quantitative and quantita-
tive evaluations of cartilage morphology as an outcome 
measure because it is sensitive to OA-related change and 
therapy interventions [7]. Semi-quantitative morpho-
metric assessments are carried out using scoring systems 
like the Knee Osteoarthritis Scoring Systems (KOSS) [8], 
the Boston Leeds Osteoarthritis Knee Score (BLOKS) 
[9], MRI Osteoarthritis Knee Score (MOAKS) [10], and 
the Whole-Organ MRI Score (WORMS) [11]. Quantita-
tive morphometric techniques utilize three-dimensional 
MRI data to measure parameters of cartilage tissue, such 
as cartilage volume, cartilage surface area, total subchon-
dral bone area, and cartilage thickness as biomarkers of 
osteoarthritis severity and progression [12].

Segmenting the articular cartilage is necessary for car-
tilage morphometry to compute quantitative parameters. 
To obtain the quantitative measures, a trained observer 
must segment the normal cartilage surface and the 
extent of cartilage damage. This segmentation process is 
assisted by specialized image analysis software, which is 
used to calculate the articular cartilage morphometric 
parameters [12]. However, regardless of the expertise of 
the trained readers or the capabilities of the segmenta-
tion software, the manual or semi-automatic segmenta-
tion technique is complex and time-consuming [12].

Recently, deep learning (DL) models of artificial 
intelligence (AI), specifically convolutional neural net-
works (CNNs), have emerged as a novel approach for 
knee cartilage segmentation and KOA diagnosis [13]. 
Unlike traditional hand-crafted strategies, DL mod-
els automatically learn features through multiple lay-
ers and numerous parameters [14]. Prasoon et  al. [15] 
developed three 2D CNNs, known as multi-planar 
CNNs. Their study demonstrated that the learned fea-
tures from CNNs outperformed hand-crafted features, 
achieving a volume overlap of 82.49% in DSC. Norman 
et al. [16] utilized the 2D U-Net model to segment vari-
ous knee sub-compartments, such as articular cartilage 

and meniscus. The researchers achieved a mean valida-
tion DSC of 86.7% on the OAI dataset, which consisted 
of 37 subjects. Similarly, Liu et al. [17] employed the 2D 
SegNet model [18] to segment bone and cartilage in the 
SKI10 dataset. They also compared the performance 
of SegNet with U-Net and found that SegNet exhib-
ited superior accuracy and computational efficiency 
in segmenting musculoskeletal images. In a study by 
Zhou et  al. [19], the CNN model was integrated with 
a conditional random field with spatial proximity as a 
supplementary post-processing technique to refine the 
labeling process. The researchers observed that all car-
tilages achieved a DSC of over 80%. Ambellan et al. [20] 
embedded SSMs adjustment into 2D and 3D CNNs as 
a post-processing step. The authors reported the best 
results of all published work on the validation data of 
the SKI10 dataset, which achieved up to 88.3% of DSC 
on the OAI validation set.

We offered a deep learning-based, fully automatic 
method for morphological assessment of knee cartilage. 
It is a new artificial intelligence (AI) segmentation car-
tilage model based on knee joint thin-section MRI data, 
which can automatically calculate the cartilage [21]. We 
all know that the accuracy of AI segmentation is verified 
by deep learning developers during the AI system devel-
opment process. AI learning is based on the recognition 
of imaging data by doctors, and the process of learning 
imaging data will be affected by the subjectivity of doc-
tors. Therefore, the accuracy of AI recognition may be 
affected. Over the past years, many studies also have 
found that there is a certain error in predicting the extent 
of Osteochondral lesions with MRI [22–24]. If machine 
learning relies on flawed imaging as the benchmark for 
accuracy, it will inevitably impact the precision of the 
machine learning outcomes. One possible approach to 
tackle these challenges is to employ a pre-trained CNN 
trained on natural images or diverse medical image 
modalities and fine-tune it using medical images [25]. In 
order to avoid this subjective influence and better evalu-
ate and improve the accuracy of our AI segmentation 
model, our study used the natural tibial plateau cartilage 
resected during total knee arthroplasty (TKA) as the gold 
standard for the first time.

The two main objectives of this study were as fol-
lows: (i) To evaluate MRI-based AI cartilage’s two-
dimensional (2D) using the natural tibial plateau as 
gold standard (ii) To evaluate MRI-based AI cartilage’s 
2D and three-dimensional (3D) accuracy using the CT-
based cartilage model as gold standard.

Keywords Artificial intelligence, Knee osteoarthritis, Articular cartilage segmentation, Magnetic resonance imaging



Page 3 of 11Sun et al. Journal of Orthopaedic Surgery and Research          (2024) 19:247  

Material and methods
Study population and dataset
This retrospective study was approved by the institu-
tional board of Beijing Tsinghua Changgung Hospital 
(No. 22383-4-02). The authors maintained complete 
control over all patient information and imaging data 
throughout the study. Between May 2021 and May 2022, 
33 patients were collected (41 participant knee images in 
41 volumes) from Beijing Tsinghua Changgung Hospital, 
School of Clinical Medicine, Tsinghua University.

The inclusion criteria were: (i) all patients were diag-
nosed with primary KOA before the operation; (ii) all 
patients had a knee thin-section MRI scan (PhilipsIn-
geniaCX, 3.0t) before the operation; (iii) the same senior 
orthopedic surgeon performed all operations, and (iv) 
the tibial plateau cartilage was obtained in all patients 
during the operation.

The exclusion criteria were (i) rheumatic immune 
osteoarthritis, traumatic osteoarthritis, and other types 
of arthritis; (ii) a severe bone defect of the tibial plateau 
that could not obtain a complete tibial plateau osteot-
omy during operation; and (iii) a preoperative knee joint 
MRI examination could not be completed due to metal 
implants.

The process of the study
Our study is mainly divided into two parts: (i) In order 
to evaluate the MRI-based AI segmentation cartilage 
model’s 2D accuracy, the natural tibial plateau was used 
as gold standard. The MRI-based AI segmentation car-
tilage model and the natural tibial plateau were repre-
sented in binary visualization (black and white) simulated 
photographed images by the application of Simulation 

Photography Technology (SPT). Both simulated photo-
graphed images were compared to evaluate the 2D Dice 
similarity coefficients (DSC). (ii) In order to evaluate the 
MRI-based AI segmentation cartilage model’s 3D accu-
racy. Hand-crafted cartilage model based on knee CT 
was established. We used these hand-crafted CT-based 
knee cartilage model as gold standard to evaluate 2D and 
3D consistency of between the MRI-based AI segmenta-
tion cartilage model and hand-crafted CT-based carti-
lage model. 3D registration technology was used for both 
models. Correlations between the AI cartilage model and 
the CT-based model were also assessed with the Pearson 
correlation coefficient (PCC). Figure  1 shows the flow 
chart of our study process.

Automatic cartilage segmentation
After the patient was admitted to the hospital, a thin-
section (slice thickness of 0.7mm) MRI scan of the sur-
gical knee was performed. The MRI of sagittal proton 
density-weighted fat suppression (PD-FS) sequences 
were used. All MR scanning was performed on a Philips 
Ingenia 3T CX MRI (volume size 400 × 400 × 300; voxel 
size 0.4 × 0.4 × 0.4 mm). The thickness of the segmenta-
tion model is 0.4mm, because there is a 0.3mm interval 
between each layer thickness. The scanned data were 
imported into an MRI-based intelligent segmentation 
system [21] developed by our hospital in cooperation 
with Beijing Tongfang Nuctech Technology Co., Ltd.

The AI segmentation system used the convolutional 
neural network structure of three-dimensional Seg-
ResNet to train the segmentation model in a supervised 
manner using the gradient descent method. An over-
view of the adopted SegResNet is illustrated in Fig.  2. 

Fig. 1 The flow chart of our study process
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SegResNet was based on a typical encoder-decoder 
structure [26] consisting of an encoding sub-network 
and a corresponding decoding sub-network. In the first 
stage, the encoder uses 3D convolution with kernels size 
of (3,3,3) and stride (2,2,2) for down sampling. Down-
sampling layer is repeated four times to achieve sufficient 
data compression, and the last feature map is reduced to 
1/16 of the input volume. The initial number of filters is 
16, and the number of filters is doubled each time when 
the feature map is down sampled. Due to the limitation of 
GPU memory, fixed-size patches are cropped with a ran-
dom center from the whole volume and then imported to 
the model. To generate pixel-wise label, the feature map 
shape is restored to the input volume shape through 3D 
convolution with kernel size of (1,1,1) and 3D trilinear 
up-sampling.

The system can automatically segment knee joint MRI 
data and quickly obtain bone and important soft tissue 
segmentation results. The average segmentation accuracy 
of the system is 92.92% in our previous study [21]. As 

shown in Fig. 3, this system can segment 15 anatomical 
structures of the knee accurately, including four kinds of 
bones of femur, tibia, patella, and fibula, and three kinds 
of cartilage, as well as other soft tissue such as meniscus, 
tendons, anterior cruciate ligament (ACL), posterior cru-
ciate ligament (PCL), medial collateral ligament (MCL) 
and lateral collateral ligament (LCL).

SPT of the MRI‑based AI model
The tibial plateau cartilage model was included in the test 
based on the knee model reconstructed by the AI system 
(Fig. 4). First, Principal Component Analysis (PCA) was 
employed to rectify the AI MRI-based model. Second, 
The SPT was used to obtain a simulated two-dimensional 
image of the AI MRI cartilage model. We restored the 
same parameters as used when taking pictures of the nat-
ural tibial plateau (The camera was 14cm from the plane, 
the focal length was 1.3 times, the photo background 
was 1 × 1 mm grid landmark paper). Then, a simulated 
two-dimensional image of the MRI-based AI cartilage 

Fig. 2 Overview of the SegResNet network architecture. The encoder network down-sample four times, and the residual block amounts of each 
stage are 1, 2, 2, 2, 4

Fig. 3 Segmentation results. From left to right are bone, quadriceps tendon and patellar tendon, ACL and PCL, MCL and LCL, cartilage, meniscus
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model was obtained. Third, binary visualization (black 
and white) of the AI MRI-based model’s simulated pho-
tographed images was performed to avoid statistical bias 
as soon as possible (Fig. 5).

Acquisition of natural tibial plateau cartilage
The same surgeon performed all the operations. 
The model of the pendulum saw was BJ1101-16659, 
and the saw blades included 100mm × 22mm and 
100mm × 14mm. The saw blades of 100mm × 22mm was 
used for tibial osteotomy. Most of the ligament stump 
was removed from the tibial plateau cartilage. The 
resected tibial plateau was cleaned with normal saline 
and placed on a mesh paper of 1 × 1mm.

SPT of the natural tibial plateau cartilage
The SPT parameters of the natural tibial plateau cartilage 
were the same as that of AI MRI-based cartilage model. 
The camera was vertically fixed above the tibial plateau 
cartilage to take two-dimensional images of the front face 
of the tibial plateau cartilage. The camera was 14cm from 

the plane, and the focal length was 1.3 times. To facili-
tate the magnification calculation, the photo background 
as 1 × 1 mm grid landmark paper was chosed (Fig.  6). 
Binary visualization (black and white) of the natural 
tibial plateau’s simulated photographed images was also 
performed to avoid statistical bias as soon as possible 
(Fig. 5).

Establishment of CT cartilage model
Although hand-crafted CT cartilage model is time-
consuming, it has high consistency and was a gold 
standard [15]. In order to evaluate the 3D consistency. 
Hand-crafted cartilage model based on CT was also 
established. Although Cone Beam Computer Tomogra-
phy (CBCT) is not as effective as spiral CT in terms of 
imaging, and CBCT may result in lower spatial resolution 
and fewer sharp edges, we can obtain the sufficient accu-
racy we need by using CBCT to carry out our study. In 
addition, the high cost of spiral CT is another reason why 
we chose CBCT. A CT scan of the tibial plateau specimen 
was performed in the Particle Laboratory of Tsinghua 

Fig. 4 MRI-based intelligent segmentation of knee joint images. a MRI-based AI segmentation model; b selected tibial image, in which the green 
part is tibial cartilage

Fig. 5 Binary visualization to simulate the photo. From left to right: Natural tibial plateau cartilage, MRI-based AI cartilage model
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University (parameters: CBCT, stadium voltage 120kVp, 
160mAs, CT reconstructed image pixel: isotropic 
0.2mm) (Fig. 7). The Cartilage was initially labeled with 
MITK Workbench software. Because SNPA has a small 
three-dimensional brush that we can use to speed up the 
annotation of small areas, then the cartilage was accu-
rately labeled through ITK-SNAP software, and finally, a 
CT cartilage model is established (Fig. 8).

3D registration technology
When the 3D DSC of the AI cartilage model and the 
CT cartilage model were verified, we found that the two 
models could not completely overlap in space, so the DCS 
could not be calculated directly. So, we did some regis-
tration of the two models. A rigid registration method 

based on the point cloud model was adopted: (i) Accord-
ing to the image characteristics, manually mark some key 
points (respectively in the corresponding places of the AI 
reconstructed model and the CT reconstructed model, 
the front end of the tibia, the medial plateau, the poste-
rior end of the tibia, the outer platform is marked with 
6 points in sequence); (ii) Calculate the preliminary reg-
istration results based on the key point information; (iii) 
Due to some objective factors (different image resolu-
tions, different image performances of CT and MR), the 
key points are not completely accurately correspond to 
each other, so the ICP (Iterative Closest Point) algorithm 
is used to adjust the preliminary registration results to 
make the fine-tuned registration results more accurate 
(Fig. 9).

Outcome
The absence of a universally accepted evaluation met-
ric necessitates the utilization of various evaluation 

Fig. 6 Illustration of the tibial plateau photo taken 
during the operation. The red part of the tibial plateau 
was the hand-crafted cartilage

Fig. 7 CBCT of the natural tibial plateau cartilage. The picture on the left is the coronal view, and the picture on the right is the sagittal view. Green: 
bone; blue: cartilage; yellow: residual ligament stumps (soft tissue)

Fig. 8 CT cartilage model showing lateral tibial plateau (left) 
and medial tibial plateau (right)
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metrics to report the segmentation results. An exami-
nation of the current body of scholarly work indicates 
that most of these evaluation metrics are founded on 
either distance or volume overlap. Among the evalu-
ation measures based on volume overlap, the Dice 
similarity coefficient (DSC) is the most frequently 
employed metric [27–31]. Consequently, irrespective 
of the dataset employed, the DSC serves as this study’s 
primary criterion for comparison. DSC is a quanti-
tative metric used to assess the degree of similarity 
between two sets of data. It is the quotient of similarity 
and ranges between 0 and 1 [32]. So DSC was used to 
evaluate the model segmentation performance.

Statistical analysis
All statistical analyses were conducted using SPSS27 
software (IBM, Armonk, NY, USA). The assessment 
of normality for continuous variables was conducted 
using the Kolmogorov–Smirnov test. DSCs were 
employed to measure the consistency between the AI 
cartilage model and the natural tibial plateau, as well 
as between the AI cartilage model and the CT-based 
model. Correlations between the AI cartilage model 
and the CT-based model were assessed with the Pear-
son correlation coefficient (PCC). The Pearson corre-
lation coefficient (PCC) is a correlation coefficient that 
measures linear correlation between two sets of data. 
It is the ratio between the covariance of two variables 
and the product of their standard deviations; thus, it 
is essentially a normalized measurement of the covari-
ance, such that the result always has a value between 
− 1 and 1. Statistical significance was defined as 0.05.

Results
The AI segmentation cartilage model produced reason-
ably high 2D DSC. The average 2D DSC between MRI-
based AI cartilage model and the tibial plateau cartilage 
is 0.83. The average 2D DSC between the AI segmenta-
tion cartilage model and the CT-based cartilage model is 
0.82. As for 3D consistency, the average 3D DSC between 
MRI-based AI cartilage model and CT-based cartilage 
model is 0.52. However, the quantification of cartilage 
segmentation with the AI and CT-based models showed 
excellent correlation (r = 0.725; P values < 0.05). In order 
to more intuitively show the results of MR-based carti-
lage segmentation models in each case. Figure 10 visually 
displayed the 2D and 3D DSC in each case. Figure 11 vis-
ually displayed cartilage volume of each case between AI 
segmentation cartilage model and the CT-based cartilage 
model.

Discussion
This is the first study to use the natural tibial plateau car-
tilage as the gold standard to evaluate the accuracy of the 
MRI-based AI cartilage segmentation model.

Compared with traditional machine learning that uses 
MRI as the gold standard, natural tibial plateau cartilage 
images were used as the gold standard for the first time in 
our study. We can avoid the subjective influence and bet-
ter evaluate the accuracy of our AI segmentation model, 
making the learning performance of the AI model more 
accurate and objective. This is the main strength of our 
study.

Most recent investigations on cartilage morphometry 
use a slice thickness of 1.0 to 1.5 mm, which is within 
the range recommended by the Osteoarthritis Research 

Fig. 9 Process of 3D registration technology
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Society International (OARSI) clinical trial guidelines 
[33]. It has been demonstrated that more minor preci-
sion errors have been linked to thinner slices [34]. The 
slice thickness of 0.7mm in our study was another main 
strength.

In this study, the natural tibial plateau cartilage was 
employed as the benchmark. The SPT was used to com-
pare the MRI-based AI cartilage segmentation model 
with the natural tibial plateau cartilage. The mean 2D 
DSC between the AI reconstructed cartilage model 
and the natural tibial plateau cartilage was found to 
be 0.83, and the average 2D DSC between the AI seg-
mentation cartilage model and the CT-based cartilage 

model is 0.82. which aligns with the findings of previ-
ous researches [17–20, 31, 35]. In Zhou’s study [19], 
they evaluated a new segmentation method using deep 
convolutional neural network (CNN), 3D fully con-
nected conditional random field (CRF), and 3D sim-
plex deformable modeling to improve the efficiency 
and accuracy of knee joint tissue segmentation. There 
were 7 tissue types with mean DSC between 0.8 and 0.9 
including the femoral cartilage tibial cartilage, patella, 
patellar cartilage, meniscus, quadriceps and patellar 
tendon, and infrapatellar fat pad. In Latif ’s study [35], 
a method for automatic segmentation of the tibiofemo-
ral joint using magnetic resonance imaging (MRI) is 

Fig.10 DSC of three groups of results in each case

Fig. 11 Cartilage volume of each case between AI segmentation cartilage model and the CT-based cartilage model
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presented in their work. The proposed method utilizes 
a deeply supervised 2D-3D ensemble U-Net, which 
consists of foreground class oversampling, deep super-
vision loss branches, and Gaussian weighted softmax 
score aggregation. The mean DSC of femoral carti-
lage (90.3 ± 2.89%), and tibial cartilage (86.7 ± 4.07%) is 
achieved. This study means our MRI-based AI cartilage 
model can reliably extract morphologic features such as 
cartilage shape and defect location of the tibial plateau 
cartilage. This approach could potentially benefit clini-
cal practices such as diagnosing OA.

In order to assess the 3D consistency of the MRI-based 
AI cartilage model, CT-based cartilage model was also 
used as gold standard to evaluate 3D consistency of the 
MRI-based AI cartilage model. The average 3D DSC 
between MRI-based AI cartilage model and CT-based 
cartilage model is 0.52. In terms of cartilage thickness 
and three-dimensional accuracy, MRI-based AI carti-
lage model underestimate the actual cartilage volume. 
However, the quantification of cartilage segmentation 
with the AI cartilage model and the CT-based model also 
showed excellent correlation. This may mean that our 
previous AI models based on MRI learning were not so 
accurate in identifying cartilage thickness. We believe 
that the reasons for the decline in accuracy of the AI 
model in predicting cartilage thickness are as follows. 
First, MRI itself has certain errors in predicting cartilage 
damage [22–24]. If machine learning relies on these MRI 
as the benchmark for accuracy, it will inevitably impact 
the accuracy of the machine learning outcomes. Second, 
we lacked extensively annotated medical images, which 
have not yet been fully integrated into clinical practices 
in our previous AI model learning. Training CNNs from 
scratch with limited labeled images can result in overfit-
ting [36]. Third, the process of AI learning imaging data 
will be affected by the subjectivity of doctors. Our results 
showed that the previous AI verification methods may 
not be completely accurate and should be verified with 
real cartilage images. Combining multiple verification 
methods will improve the accuracy of the AI model.

There are still some limitations in this study. First, the 
criteria for selecting cases were stringent in terms of 
inclusion and exclusion. All patients had severe osteoar-
thritis. There was a lack of comparative data on healthy 
patients and mild osteoarthritis. Second, Although AI 
segmentation cartilage model produced reasonably high 
2D Dice coefficients. The average 3D DSC between MRI-
based AI cartilage model and CT-based cartilage model 
is not high. MRI-based AI cartilage model underestimate 
the actual cartilage volume. Thus, additional research 
with a larger pool of patients on more natural images is 
necessary to increase cartilage thickness and 3D accuracy 
of the MRI-based AI cartilage model.

Conclusion
Our study demonstrated that our MRI-based AI car-
tilage model can reliably extract morphologic features 
such as cartilage shape and defect location of the tibial 
plateau cartilage. This approach could potentially ben-
efit clinical practices such as diagnosing OA. However, 
in terms of cartilage thickness and three-dimensional 
accuracy, MRI-based AI cartilage model underestimate 
the actual cartilage volume. Our results showed that 
the previous AI verification methods may not be com-
pletely accurate and should be verified with real carti-
lage images. Combining multiple verification methods 
will improve the accuracy of the AI model. In the 
future, we will employ the pre-trained CNN trained on 
more natural images or diverse medical image modali-
ties and fine-tune it to improve cartilage thickness and 
3D accuracy of the MRI-based AI cartilage model.
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