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Abstract
Background For knee osteoarthritis patients, analyzing alignment of lower limbs is essential for therapy, which 
is currently measured from standing long-leg radiographs of anteroposterior X-ray (LLR) manually. To address the 
time wasting, poor reproducibility and inconvenience of use caused by existing methods, we present an automated 
measurement model in portable devices for assessing knee alignment from LLRs.

Method We created a model and trained it with 837 conforming LLRs, and tested it using 204 LLRs without 
duplicates in a portable device. Both manual and model measurements were conducted independently, then we 
recorded knee alignment parameters such as Hip knee ankle angle (HKA), Joint line convergence angle (JCLA), 
Anatomical mechanical angle (AMA), mechanical Lateral distal femoral angle (mLDFA), mechanical Medial proximal 
tibial angle (mMPTA), and the time required. We evaluated the model’s performance compared with manual results in 
various metrics.

Result In both the validation and test sets, the average mean radial errors were 2.778 and 2.447 (P<0.05). The test 
results for native knee joints showed that 92.22%, 79.38%, 87.94%, 79.82%, and 80.16% of the joints reached angle 
deviation<1° for HKA, JCLA, AMA, mLDFA, and mMPTA. Additionally, for joints with prostheses, 90.14%, 93.66%, 
86.62%, 83.80%, and 85.92% of the joints reached that. The Chi-square test did not reveal any significant differences 
between the manual and model measurements in subgroups (P>0.05). Furthermore, the Bland-Altman 95% limits of 
agreement were less than ± 2° for HKA, JCLA, AMA, and mLDFA, and slightly more than ± 2 degrees for mMPTA.

Conclusion The automatic measurement tool can assess the alignment of lower limbs in portable devices for knee 
osteoarthritis patients. The results are reliable, reproducible, and time-saving.
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Introduction
Knee osteoarthritis (knee OA), can cause significant 
joint pain, decreased mobility, and even disability [1]. 
For patients in the end stage of the condition, Total Knee 
Arthroplasty (TKA) is a commonly used and highly effec-
tive therapy [2]. It is important to properly assess align-
ment during the perioperative period to ensure optimal 
outcomes [3]. Lower limb alignment is a critical aspect 
that surgeons carefully evaluate when assessing defor-
mity, predicting treatment outcomes, and planning for 
surgery. For cases involving knee OA, the majority of sur-
geons agree that achieving a neutrally aligned lower limb 
after TKA is a crucial objective [4].

Long-leg radiographs of anteroposterior X-ray (LLR) 
quantify alignment by identifying specific anatomic land-
marks [5, 6]. Long-leg radiographs of anteroposterior 
X-ray (LLR) quantify alignment by identifying specific 
anatomic landmarks [7]. Currently, surgeons measure 
alignment using standard rulers, digital calipers, or 
manual measurements in hospital computer systems like 
PACS (Picture Archiving and Communication System) 
[8]. LLR is considered the gold standard for radiological 
imaging of lower limbs in weight-bearing standing posi-
tions, providing insight into their mechanics [5, 6]. How-
ever, manual methods for measuring the tibial-femoral 
angle have drawbacks such as being time-consuming, 
inconvenient, and having low reproducibility of results. 
Additionally, the reliability of these methods relies on 
clinical experience. To address these issues, Takahashi et 
al. [9] proposed a self-developed method that uses digital 
technology to measure the angle on a radiographic film. 
This method requires the observer to identify four stan-
dardized points using a mouse and calculate the angle. 
Sled et al. [10] proposed a landmark-based method for 
assessing Hip knee ankle angle (HKA) using customized 
software, addressing common issues in similar meth-
ods. In clinical practice, measurement accuracy can be 
influenced by factors such as body position [11–13] (like 
loading, flexion, or rotation of lower limbs), image qual-
ity [7], and reader experience [14–16]. Even with soft-
ware assistance, deviations caused by hardware facilities 
and use can also affect the measurement, which leads to 
inter- and intra-reader variability and unsatisfied reliabil-
ity [17–19]. In actual use, landmarks selection manually 
can also be time-consuming.

With the advancements in Artificial Intelligence, Deep 
Learning-based image analysis is increasingly being uti-
lized in clinical medicine. As the volume of imaging data 
grows, AI-powered software can provide high-quality 
assessment outputs in less time and with reduced effort 
required from surgeons. Simon et al [3] proposed a fully 
automated deep learning tool based on the LAMA model 
for knee alignment assessment and limb length measure-
ments. Tack et al [20] proposed a similar fully automated 

tool for measuring the HKA from LLR based on YOLOv4 
And Resnet Landmark regression Algorithm. Accord-
ing to the researchers, their tools based on various mod-
els have achieved satisfactory accuracy. But, Tack et al’s 
tool only identifies the knee as varus or valgus deformity 
through HKA, and Simon et al’s model cannot assess 
lower extremity alignment after TKA. Moreover, there is 
no diagnostic tool for clinical use resulting from most of 
the current studies.

For this study, we analyzed the average angle measure-
ments of up to 3 orthopedic surgeons for each LLR and 
compared them to the results generated by a fully auto-
mated tool. The tool was specifically trained to provide 
clinically significant angles of alignment, both with and 
without the presence of a prosthesis in LLRs.

Materials and methods
This study was approved by the Ethics Review Board 
of the First Medical Center of Chinese PLA General 
Hospital.

We retrospectively reviewed 1041 digital LLR X-rays 
(from 623 patients) in the dataset of the General Hospital 
of the People’s Liberation Army. These X-rays were cap-
tured using the uDR 780i Pro Fully Automatic Ceiling-
mounted DR (UNITED IMAGING, Shanghai, China) 
between January and December 2021. Each patient may 
have undergone multiple pre- and post-operative radio-
graphs. All X-rays were performed for clinical or periop-
erative measurements.

The inclusion criteria were as follows: (1) patient 
age ≥ 40; (2) knee OA diagnosis established based on the 
Chinese Guidelines for the Diagnosis and Treatment 
of Osteoarthritis (2019 edition) [21]; (3) standing LLR 
X-rays of both lower limbs; (4) for the same patient, over 
90 days between examinations; (5) previous total knee 
arthroplasty history or no surgery history. The exclu-
sion criteria were as follows: (1) non-standard stand-
ing LLR X-rays; (2) severe deformity of the femur or 
tibia; (3) comorbidities of other diseases that may cause 
severe knee deformities or joint fusion; (4) comorbidities 
including infectious arthritis or postoperative joint infec-
tion; (5) LLRs showing other implants like uni-compart-
mental knee prosthesis or internal fixation; (6) incorrect 
posture (such as rotation or flexion of lower limbs); (7) 
poor image quality.

Model architecture
We divide the included LLRs into a training set (837), 
a validation set (101), and a test set (204) according to 
approximately 80%:10%:20%. For the training set (LLRs 
were stored with an average size of 2021 × 2021 and a 
pixel spacing of 0.2  mm), these were calibrated land-
marks by orthopaedic specialists, which was imple-
mented in MATLAB (Mathworks, Natick, MA). Then all 
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images were resized to 640 × 320 pixels with the isotropic 
spacing of 0.79  mm using a bilinear interpolation algo-
rithm and then normalized for model development.

As Liu et al. [22] demonstrated in their study about 
preoperative planning of total hip arthroplasty, we for-
mulated the alignment measurement to a task including 
two branches: (1) landmarks detection branch, and (2) 
edges prediction branch. Each resized LLR was firstly 
input into the backbone network to extract high-level 
features for two branches.

As for the backbone network, we used the HRNet 
model for 2 branches above(the proposed model is 
shown in Fig. 1) [23]. For landmarks detection, each land-
mark was converted into a heatmap with a 2D Gaussian 
distribution centered at its coordinates (the hyperparam-
eter σ of Gaussian heatmaps is chosen to 2), and the dis-
tribution is normalized to [0,1]. For edge prediction, each 
edge connecting two landmarks was denoted as a vector 
and normalized during the experiment for faster con-
vergence, which was a constraint for helping correct the 
detection deviations implicitly during training.

The proposed model was implemented using PyTorch 
and ran on a machine with 4 Nvidia P100 GPUs. The 
parameters of the network were initialized with the pre-
trained model from the large public dataset ImageNet 
[24]. In addition, the training set was augmented by 
several methods commonly used [25]. According to the 
study of Adam [26], the backbone network was optimized 
with an initial learning rate of 1e-3, which was decreased 
to 1e-4 and 1e-5 at the 120th and 170th epochs. During 

the model development, the training loss curve normally 
decreased and stabilized without overfitting. The overall 
optimization is carried out for 200 epochs with a batch 
size of 32.

Surgeons’ evaluation
To test the accuracy of the tool, We used 204 images as a 
training set from knee OA patients who had not under-
gone surgery, and those who had undergone unilateral or 
bilateral total knee replacement surgery (Some patients 
may have multiple images pre- and post-operatively). 
There was no duplication of the test set with either the 
training or validation sets. To assess the measurements 
of the proposed model, after removing patient informa-
tion, each LLR was measured by two senior surgeons on 
a blinded basis independently in PACS, including HKA, 
JCLA(Joint line convergence angle), AMA(Anatomical 
mechanical angle), mLDFA(mechanical Lateral distal 
femoral angle), and mMPTA(mechanical Medial proxi-
mal tibial angle). They accomplished this by manually 
identifying and connecting the corresponding landmarks. 
The average of the measurements for the landmarks and 
angles of alignment were considered to be the ground 
truths. In the portable device, all LLRs were captured 
using mobile phones (iPhone X, Apple Inc.). During the 
photo session, the phone was mounted on a tripod, posi-
tioned 40  cm away from the LLRs, and centered with 
them for constant indoor lighting. The images were saved 
in JPG format and had a resolution of 4000 × 3000 pix-
els. These images were not optimized or pre-processed 

Fig. 1 The framework of the proposed method and examples of corresponding landmarks. v1, Centre of the femoral head; v2, Centre of the femoral 
diaphysis; v3, Lowest point of lateral femoral condyle or prosthesis; v4, Centre of the knee joint or prosthesis on the femoral side; v5, Lowest point of 
medial femoral condyle or prosthesis; v6, Lowest point of lateral tibial plateau or prosthesis; v7, Centre of the knee joint or prosthesis on the tibia side; 
v8, Lowest point of medial tibial plateau or prosthesis; v9, Centre of the tibia diaphysis; v10, Centre of the ankle joint. LLR was from a 65-year-old female 
patient diagnosed with knee OA and authorized consent was obtained from the patient before the use
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before being fed into the model, and the model output 
the predictions.

Statistical analysis
To compare the performance of landmarks detection, we 
adopted mean radial error (MRE) for quantitative com-
parison, which was defined as

 
MRE = 1/n

∑n

i=1
Ri

n  denoted the number of detected landmarks and Ri  
was the Euclidean distance between the predicted land-
marks coordinates obtained by extracting the maxima 
on heatmaps and the ground truths. To assess the results 
of the proposed model, we adopted the Chi-Square 
test. P ≥ 0.05 was considered to represent no significant 

difference between manual measurements and model 
calculations. Bland-Altman was adopted to assess the 
consistency between the two methods. For angles, pre-
vious studies considered a difference of > 2° as clinically 
relevant [3], so we adopted >1° and >2° respectively. The 
data were analyzed using R (4.0.0) and SPSS Version 
25.0.0.2 (SPSS, Inc., Chicago, Ill.).

Result
For comparing the results of the validation and test sets, 
the average of MREs were 2.778 and 2.447 between the 
two datasets, and MREs of each landmark were listed in 
Table 1. For both the model and the clinical use, each side 
of the lower limb was measured separately. In the test set, 
204 images from 167 patients were included (the demo-
graphics and morphological data were shown in Table 2), 
98.09% (257 of 262) of those with a native knee joint were 
identified, and 97.26% (142 of 146) of those with a pros-
thesis identified (as shown in Table 3).

The automatic measurement results were highly cor-
related with the standard reference [27]. with the mean 

Table 1 The MRE for landmark and average in the validation and test sets
Landmarks
Datasets

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 mean

Validation set 5.432 4.429 2.266 1.514 2.226 2.547 2.081 2.325 3.223 1.740 2.778
Test set 4.131 2.978 2.272 1.508 2.233 2.395 2.012 2.309 3.105 1.528 2.447

Table 2 Demographics and morphological data in test set
Variables Test set (n = 408 knee joints)

n (%) or Mean ± SD (Range)
Native Knee Joint 262
number of detected† 257 (98.1%)
number of undetected† 5 (1.9%)
sex(female/male) 115/39
age(year)* 62.72 ± 8.16
BMI* 25.98 ± 3.33
side(left/right)† 133 (51.8%)/124 (48.2%)
K-L grade†
K-L 2 25 (9.7%)
K-L 3 107 (41.6%)
K-L 4 125 (48.6)
length of symptoms†
<5 years 58 (22.6%)
5–10 years 119 (46.3%)
>10 years 80 (31.1%)
alignment status†
varus 140 (54.5%)
neutral 79 (30.7%)
valgus 38 (14.8%)
Joint with Prothesis 146
number of detected† 142 (97.3%)
number of undetected† 4 (2.7%)
sex(female/male) 73/29
age(year)* 65.33 ± 5.11
BMI* 27.32 ± 3.47
side(left/right)† 63 (44.4%)/79 (55.6%)
*the values are given as the mean and standard deviation;

†the values are given as the number with the percentage in parentheses

Table 3 Correlations and agreement of manual and automatic 
measurements of alignment and used time

Knee 
Joint†

MAD* % 
AD<1°†

% 
AD<2°†

P 
value

Native Joint
HKA 257 0.47 ± 0.38 92.22% 99.20%
JCLA 257 0.65 ± 0.60 79.38% 96.50%
AMA 257 0.48 ± 0.44 87.94% 99.22%
mMPTA 257 0.79 ± 0.87 79.82% 93.39%
mLDFA 257 0.62 ± 0.54 80.16% 97.67%
Used time* <0.01
mean manual 173.78 ± 12.37
model 2.53 ± 0.80
Joint with 
Prothesis
HKA 142 0.51 ± 0.40 90.14% 98.59%
JCLA 142 0.34 ± 0.38 93.66% 98.59%
AMA 142 0.50 ± 0.43 86.62% 99.30%
mMPTA 142 0.55 ± 0.46 83.80% 98.59%
mLDFA 142 0.54 ± 0.42 85.92% 99.30%
Used time* <0.01
mean manual 175.04 ± 13.11
model 2.54 ± 0.80
MAD, mean absolute difference

AD, average deviation

*the values are given as the mean and standard deviation;

†the values are given as the number with the percentage in parentheses
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absolute difference (MAD) of HKA, JCLA, AMA, 
mMPTA, mLDFA, being, respectively, 0.47 ± 0.38, 
0.65 ± 0.60, 0.48 ± 0.44, 0.79 ± 0.87, 0.62 ± 0.54 for the lower 
limbs with a native knee joint and 0.51 ± 0.40, 0.34 ± 0.38, 
0.50 ± 0.43, 0.55 ± 0.46, 0.54 ± 0.42 for lower limbs with a 
prosthesis. And the percentage of angle deviation (AD) 
<1° of HKA, JCLA, AMA, mMPTA, mLDFA, achieved 
92.22%, 79.38%, 87.94%, 79.82%, 80.16% for those with 
a native knee joint and 90.14%, 93.66%, 86.62%, 83.80%, 
85.92% for those with a prosthesis respectively. Auto-
mated measurement saved over 98% of the time com-
pared to manual methods.

In order to assess whether the measurements were 
affected by patient characteristics, we classified the test 
set according to alignment status, sex, BMI, and age (as 

shown in Table  4). The accuracy was defined as AD<1°. 
And after we regrouping the patients in the test set 
according to those, The Chi-square test for HKA showed 
no significant differences between the model and manual 
measures in subgroups (P>0.05 for each subgroup).

The average of manual measurements was considered 
as ground truth. Bland–Altman plots showed the con-
sistency between prediction angle and ground truth (as 
shown in Fig. 2). In the Bland–Altman plots, the dashed 
line denoted the mean of the difference between the two 
methods that value is -0.014, 0.039, -0.144, 0.187, -0.023 
for HKA, JCLA, AMA, mMPTA, mLDFA respectively. 
And the dotted lines denoted ± 1.96 standard deviations 
that value was away from the mean of difference. Bland-
Altman plots showed that 95% limits of agreement were 

Table 4 Accuracy/inaccuracy and Chi-square test of HKA in test set
Native Joint Joint with Prothesis
accuracy inaccuracy χ² p value accuracy inaccuracy χ² p value

Alignment status
Varus (≤-2°) 179 14 0.975 0.614 72 6 3.511 0.173
Neutural (-2°~+2°) 38 3 47 5
Valgus (≥ 2°) 20 3 9 3
Sex
Male 50 8 3.771 0.052 30 5 1.024 0.312
Female 187 12 98 9
BMI
BMI ≤ 25 68 5 0.552 0.458 32 5 0.752 0.386
BMI>25 166 18 96 9
Age
age ≤ 60 52 5 0.537 0.464 28 3 0.001 0.969
age>60 187 12 100 11

Fig. 2 Comparative evaluation of manual and automatic measurement of lower limb alignment. Bland-Altman plots display the agreement between 
both surgeons’ manual reference and model measurements. diff, difference; SD, standard deviation
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1.200 and − 1.227, 1.557 and − 1.479, 1.116 and − 1.404, 
2.191 and − 1.814, 1.497 and − 1.54 for HKA, JCLA, 
AMA, mMPTA, mLDFA respectively.

Discussion
In this study, for knee OA patients, we presented a fully 
automated model in portable devices for measuring the 
alignment of the lower extremity and validated its consis-
tency with surgeons’ measurements. We took five indica-
tors of HKA, JCLA, AMA, mLDFA, mMPTA. The images 
were taken directly from the portable device without any 
need for pre-processing. The MRE findings from both the 
validation and test sets indicate the model’s exceptional 
generalization and robustness. Additionally, the Bland-
Altman analysis demonstrated that the model’s measure-
ments were reliable, whether or not the images had knee 
prostheses.

According to Table  3, stricter measurement criteria 
with AD<1° yield lower percentage outcomes for JCLA 
(79.38%), mMPTA (79.82%), and mLDFA (80.16%), espe-
cially for native knee joints. This is primarily because 
knee OA patients may have varying levels of abrasion 
and osteophytes present on the tibiofemoral joint sur-
face, causing corresponding landmarks to be dense 
and indistinct. As a result, there may be a potential dis-
crepancy in anatomical locations (landmarks) detec-
tion between manual and model measurements, due to 
slight variations in practice. As the prosthesis appeared 
clearly on LLRs, made it easier to identify landmarks dur-
ing manual measurements. Compared to natural knees, 
knee joints with prostheses exhibit lower measurement 
differences (MAD and AD<1°) in JCLA, mMPTA, and 
mLDFA. Additionally, during the manual examination, 
surgeons usually zoom in on the femoral condyles and 

tibial plateau to detect landmarks in images, but the 
model was able to directly detect all landmarks in the 
images. Such differences in practice may also affect mea-
surement consistency. Tables 2 and 4 show that the test 
set patients were more likely to be women, overweight or 
obese, older, and have lower limb varus deformity. This 
is consistent with knee OA disease progression and what 
we have observed in the clinic.

In research concerning lower limb alignment, multiple 
measurements are commonly taken by researchers in 
order to reduce errors [3, 20, 28, 29]. The previous study 
showed that knee OA patients had a broader distribu-
tion of lower limb alignment, making manual measure-
ment more difficult, especially in large patient cohorts for 
research [27, 28]. In this context, with the development 
of deep learning, fully automated measurement improves 
diagnostic accuracy and reproducibility, benefiting 
related clinical work and research (the actual use of the 
process is illustrated in Fig. 3). Deep learning is typically 
used for segmentation, detection, or classification tasks, 
however, for achieving angle measurements, it is neces-
sary to adapt the complex post-processing of images [30]. 
In conventional manual measurement techniques, align-
ments were determined by specifying specific anatomi-
cal locations on the limb and then measuring the angle of 
the connection between the points. Building on this, the 
proposed model adopted a similar logical approach based 
on automatic landmark detection and produced accurate 
and reliable measurement results across a wide range of 
morphological configurations.

Similar studies have yielded close results for alignment 
measurements of lower-extremity [3, 20, 30]. Compared 
to these, we saved more time and achieved automated 
measurements on portable devices, which greatly 

Fig. 3 Actual use of the measuring tool schematic in portable device
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facilitates practical use. The HRNet model, proposed for 
visual recognition problems in 2D images, was adopted 
in our study [23]. Compared to existing low-resolution 
classification networks or high-resolution representa-
tional learning networks, HRNet was characterised by 
the following features: it connected high- and low-reso-
lution convolutions in parallel; it maintained high resolu-
tion throughout the process, rather than recovering high 
resolution from low resolution; it repeatedly fused multi-
resolution representations, producing rich high-resolu-
tion representations with strong positional sensitivity; 
its storage cost was comparable to available technologies 
[4]. These features allowed us to guarantee accurate mea-
surements while allowing the model to run on portable 
devices.

This study had limitations. First, unilateral LLRs were 
excluded for methodological consistency, which lim-
ited the diversity of the data to some extent. Second, as 
knee OA is a chronic degenerative disease, the entire 
data set was skewed towards middle-aged and older 
people. The efficacy of this model needs further inves-
tigation to assess the fit in younger knee OA patients or 
non-knee OA patients. Thirdly, knee OA or post-TKA 
patients were included. Therefore, the accuracy of the 
model measurements also needed to be further investi-
gated in post-unicompartmental knee arthroplasty or 
post-internal fixation of the lower limb patients. Fourth, 
in patients with severe femoral or tibial deformities, tra-
ditional alignment assessment methods were not appli-
cable and were not suitable for automated measurement. 
Fifth, there were still images that could not be identified, 
requiring further improvements to the model and more 
explicit requirements for the quality of the LLRs (Fig. 4).

Conclusion
The deep learning-based measurement tool can be used 
to assess the lower-limbs alignment of knee OA patients 
in portable devices. The results are highly reliable, repro-
ducible, and time-saving.
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