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Abstract 

Osteonecrosis of the femoral head (ONFH) is a elaborate hip disease characterized by collapse of femoral head 
and osteoarthritis. RNA N6-methyladenosine (m6A) plays a crucial role in a lot of biological processes within eukary-
otic cells. However, the role of m6A in the regulation of ONFH remains unclear. In this study, we identified the m6A 
regulators in ONFH and performed subtype classification. We identified 7 significantly differentially expressed m6A 
regulators through the analysis of differences between ONFH and normal samples in the Gene Expression Omnibus 
(GEO) database. A random forest algorithm was employed to monitor these regulators to assess the risk of developing 
ONFH. We constructed a nomogram based on these 7 regulators. The decision curve analysis suggested that patients 
can benefit from the nomogram model. We classified the ONFH samples into two m6A models according to these 7 
regulators through consensus clustering algorithm. After that, we evaluated those two m6A patterns using principal 
component analysis. We assessed the scores of those two m6A patterns and their relationship with immune infiltra-
tion. We observed a higher m6A score of type A than that of type B. Finally, we performed a cross-validation of crucial 
m6A regulatory factors in ONFH using external datasets and femoral head bone samples. In conclusion, we believed 
that the m6A pattern could provide a novel diagnostic strategy and offer new insights for molecularly targeted 
therapy of ONFH.

Keywords RNA N6-methyladenosine, Osteonecrosis of the femoral head, Immune microenvironment, Subtype 
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Introduction
Osteonecrosis of the femoral head (ONFH) is a pro-
gressive and disabling chronic disease that can cause 
femoral head collapse, and lead to total hip replacement 
[1–3]. ONFH is characterized by bone cell necrosis due 
to ischemia of the femoral head [4]. It is estimated that 
there are approximately 100,000–200,000 new ONFH 
cases were diagnosed in China per year [5]. The early 
symptoms of ONFH are often not apparent, and patients 
are often diagnosed at the late stages (ARCO stage III–
IV). Various approaches exist for treating early ONFH, 
ranging from surgical interventions to preserve the hip 
to medication [6–9]. Despite the valuable insights pro-
vided by recent studies on ONFH in guiding our clinical 
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practices, a thorough understanding of the molecular 
mechanism remains elusive. Hence, there is an urgent 
need to investigate novel biomarkers and effective thera-
peutic targets for early diagnosis and treatment of ONFH 
patients.

N6-methyladenosine (m6A) is the most abundant epi-
genetic RNA modification in eukaryotes, regulating RNA 
metabolism in cells by affecting writers, erasers, and 
readers, ultimately impacting human health and disease 
processes [10]. The m6A function is primarily regulated 
by the combination of m6A binding protein, demethy-
lase and m6A methyltransferase [11]. M6A is involved 
in various phases of RNA metabolism, including mRNA 
translation, degradation, and folding [12]. Dysregulated 
m6A levels was associated with numerous diseases, such 
as tumors, neurological disorders, and metabolic con-
ditions [13–15]. Moreover, the m6A RNA methylation 
also regulates the differentiation of bone marrow mes-
enchymal stem cells (BMSCs) and involves in the disease 
progression associated with BMSCs abnormalities [16]. 
Although studies have confirmed that m6A regulates the 
translation of various femoral necrosis-related mRNAs 
in tumor and inflammation-related diseases [17], there is 
still limited studies detecting the role of m6A in ONFH. 
Similarly, increasing evidence has highlighted the integral 
role of inflammatory osteoimmunology in ONFH patho-
genesis [18–20]. Therefore, determining the role of m6A 
and the immune microenvironment in ONFH provides a 
novel approach for its prevention and treatment.

In this study, we explored the impact of m6A modula-
tors in the diagnostic classification of ONFH and evalu-
ated the degree of immune infiltration in ONFH. We 
screened seven key regulators from our database to 
assess the disease risk of ONFH and assessed the immune 
microenvironment of two m6A patterns of ONFH. 

Additionally, we conducted cross-validation of key m6A 
regulatory factors in ONFH using external datasets and 
bone samples.

Methods
Data collection
The ONFH dataset GSE123568 was acquired from the 
GEO database (https:// www. ncbi. nlm. nih. gov/ geo/). This 
dataset comprises peripheral serum samples from 10 
healthy individuals and 30 ONFH patients. It contained 
25 m6A regulators, consisting of 15 readers, 2 erasers, 
and 8 writers [21–23].

Construction of random forest (RF) and support vector 
machine (SVM) models
We conducted the RF and SVM models to evaluate the 
risk of ONFH. The RF algorithm was generated by the 
“randomForest” package in the R software. We deter-
mined the importance score > 1, thus screening 13 key 
regulators out of 25 m6A regulators. SVM is a useful 
tool for developing predictive models or classifiers [24, 
25]. We assessed the accuracy of both models through 
receiver operating characteristic (ROC) curve analysis, 
“residual plots,” and “reverse cumulative distribution of 
residuals.’

Nomogram model
We created a nomogram model to predict the risk of 
ONFH using the “RMS” and “rmda” packages in the 
R software. To evaluate the prediction accuracy of the 
nomogram model, we utilized decision curve analysis 
(DCA) and calibration curves. Besides, we used clinical 
impact curves to determine whether the predictions of 
the nomogram model would beneficial the patients.

Fig. 1 A The heatmap of 13 m6A regulators expression in GSE123568. B The histogram of 25 m6A regulators expression in GSE123568. *p < 0.05, 
**p < 0.01, and ***p < 0.001

https://www.ncbi.nlm.nih.gov/geo/
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Identification of two m6A isoforms and m6A gene isoforms
Based on the 25 m6A regulators, the sample data were 
categorized into m6A models by consistency clustering 
analysis. Next, we screened the differentially expressed 
genes (DEGs) related to m6A. After that, we classified the 
DEGs associated with m6A into two m6A subtypes using 
consensus clustering analysis. The m6A-related DEGs 
were implemented by R’s “limma” package. For subtype 
classification, the consensus clustering algorithm was 
generated by the “ConsensusClusterPlus” package of R 
software.

The sample’s m6A score
The m6A score was used to assess the genetic charac-
teristics of the m6A pattern of ONFH. The m6A pattern 
was first determined using principal component analysis 
(PCA), and then the m6A score was calculated by the fol-
lowing formula: m6A score = 6 (PC1i + PC2i) [26–28].

Functional enrichment analysis of DEGs between different 
M6A modes
The gene ontology (GO) enrichment and Kyoto Ency-
clopedia of Genes and Genomes (KEGG) pathway 
analysis of DEGs between different M6A patterns were 
performed. Analysis of GO mainly includes biological 
process (BP), molecular function (MF), and cellular com-
ponent (CC) domains [29]. KEGG is a reference knowl-
edge base for the biological interpretation of genomic 
sequences and other high-throughput data, which ena-
bles the identification of potential signaling pathways 
through KEGG enrichment analysis [30].

Evaluation of the microenvironment for immune 
infiltration
In order to investigate the immune infiltration status of 
ONFH, we performed single-sample gene set enrich-
ment analysis (ssGSEA) to assess the level of immune 
infiltration in the samples [31]. The gene expression lev-
els of the samples were ranked and their grades were 
obtained, which were recorded as ssGSEA scores. Then, 
we detected the degree of immune cell infiltration in each 
sample.

Cross‑validation of the key m6A regulatory factors in ONFH
We initially confirmed the expression of 7 key m6A regu-
latory factors in GSE74089. Then, we collected 6 femo-
ral head specimens from the Third Affiliated Hospital of 
Guangzhou University of Chinese Medicine, compris-
ing three with ONFH and three with femoral neck frac-
tures (FNF). Approval for this study was granted by the 
Ethics Committee of the Third Affiliated Hospital, and 
patient informed consent was obtained. The samples 
were obtained during total hip arthroplasty. The bone tis-
sue was immediately frozen in liquid nitrogen, and RNA 
extraction followed a standardized protocol. Thermo 
Scientific’s qRT-PCR quantified mRNA transcripts using 
the NanoDrop Lite and CFX96 Touch real-time PCR 
detection systems (BIO-RAD, CFX96, USA). Amplifi-
cation conditions comprised an initial 95  °C for 10 min, 
succeeded by 40 cycles of 95  °C for 15 s, 60  °C for 30 s, 
and 60  °C for 30  s. The stability of potential candidate 
gene expression was evaluated using the standard com-
parative method (ΔΔCt), with relative target gene expres-
sion levels computed using the 2 − ΔΔCt method. Primer 

Fig. 2 Evaluation of correlation between writers and erasers. A A negative association between METTL14 and FTO (R =  − 0.45, p < 0.05); B A negative 
association between WTAP and FTO (R =  − 0.51, p < 0.05)
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sequences are shown in Additional file 1: Supplementary 
Table 1.

Statistical analysis
We used linear regression analysis to assess the asso-
ciation between writers and erasers. Additionally, we 
employed the Wilcoxon test for comparisons between 
two groups and the Kruskal–Wallis test for multiple 
group comparisons. Statistical significance was defined 
as P values less than 0.05 (two-sided). All statistical anal-
yses were conducted using R version 4.2.2.

Result
Expression of 25 m6A regulators in ONFH
We performed assessment of the data after remov-
ing batch effects. We obtained the expression values of 
25 m6A regulators in samples of GSE123568. A total of 
13 m6A regulators with significant differential expres-
sion (i.e. RBN15, RBM15B, CBLL1, YTHDF1, YTHDF2, 
YTHDF3, YTHDC2, HNRNPC, HNRNPA2B1, FMR1, 
IGFBP2, ELAAVL1, and ALKBH5) were identified. The 
heat map and histogram of 13 differential m6A regulators 
were shown in Fig. 1A and B, respectively.

Correlation analysis between writers and erasers
The linear regression analysis revealed that METTL14 
was negatively correlated with FTO and ALKBH5 

Fig. 3 Construction of the RF model. A The residuals of SVM and RF models; B Boxplots of residual reflecting the residuals of SVM and RF models; C 
ROC curves displayed the accuracy of SVM and RF models; D Results of the random forest plot; E Significance score of 7 critical m6A moderators
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(Fig. 2A), and WTAP was also negatively correlated with 
FTO and ALKBH5 (Fig. 2B).

Model selection
In order to assess the risk of developing ONFH, we 
developed the RF and SVM models. Compared with the 
SVM model, the residuals of the RF model are smaller in 
the “Boxplots of residual” (Fig.  3A) and in the “Reverse 
cumulative distribution of residual” (Fig. 3B). The results 
from ROC analysis shows that the RF model has better 
accuracy (Fig. 3C). Figure 3D shows that the RF model is 
a good model for predicting the risk of ONFH. As shown 
in Fig. 3E, the m6A genes were ranked according to the 
RF model. We screened m6A genes with importance 

scores > 1 for subsequent disease risk assessment, includ-
ing CBLL1, HNRNPC, ALKBH5, RBM15B, YTHDF2, 
YTHDF1, and YTHDF3.

Construction of the nomogram
We constructed a nomogram model of the 7 key m6A 
regulators derived from the RF model to evaluate ONFH 
risk (Fig. 4A). Calibration curves demonstrated the high 
accuracy of the nomogram model (Fig.  4B). When pre-
dicted using the nomogram model, the clinical impact 
curves showed a high rate of true positives in high-risk 
patients (Fig. 4C). Decision curve analysis (DCA) curves 
showed a high predictive accuracy with the nomogram 
model (Fig. 4D).

Fig. 4 Conduction of a nomogram. A Nomogram of 7 critical m6A regulators; B Results of calibration curve; C The clinical effect for the nomogram 
model was evaluated with clinical impact curve; D The DCA curve showed a high accuracy of the nomogram
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Identification of two isoforms based on 7 key M6A 
regulators
The ONFH samples were classified into two subtypes—
m6A cluster A and m6A cluster B. We observed that the 
consensus was stable when the clusters (K) value was 2 
(Fig. 5A). The histograms and heatmaps of the expression 
of the 7 m6A regulators in both subgroups are shown in 
Fig. 5B and C. These 7 key regulators were further con-
firmed by PCA to accurately classify ONFH samples into 
two subgroups (Fig. 5D).

Investigation of the relationship between immune cell 
infiltration and M6A subtypes
Previous studies reported that the immune inflammatory 
response generated by immune cell infiltration involved 
the disease process of ONFH [32, 33]. Therefore, we 

explored the differences between two m6A subtypes in 
various immune cells. We found that the two m6A iso-
forms showed differences in the infiltration of immune 
cells, including Gamma delta cells, immature dendritic 
cells, mast cells, plasma cells, T follicular helper cells, and 
type 2 T helper cells (Fig. 6A). In order to investigate the 
role of immunity in ONFH, we explored the relationship 
between 7 key m6A regulators and immune cell infiltra-
tion, among which YTHDF3 was the m6A regulator most 
associated with immune cell infiltration (Fig.  6C). After 
that, the case samples were divided into YTHDF3 low 
and high expression groups. There were significant differ-
ences in the expression of various immune cells between 
the YTHDF3 low and high expression groups. The results 
indicated that these two groups showed significant 

Fig. 5 Subgrouping of ONFH samples. A Consensus clustering of 7 key regulators; B Heatmap of expression of 7 key regulators in the two 
subgroups; C Histogram of expression of 7 key regulators in the two subgroups; D PCA of the two subgroup classifications. *p < 0.05, **p < 0.01, 
and ***p < 0.001
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differences in the infiltration of immune cells, including 
Gamma delta cells, immature dendritic cells, mast cells, 
plasma cells, regulatory T cells, T follicular helper cells, 
and type 2 T helper cells. (Fig. 6B).

Genotyping based on M6A isoforms
There were 221 DEGs between these two subtypes 
(Fig.  7A). The GO analysis showed significant enrich-
ment of DEGs for erythrocyte development, hemoglobin 
complex and molecular carrier activity (Fig. 7B, C). The 

KEGG analysis was mainly enriched in Metabolic path-
ways, Porphyrin metabolism and Mucin type O-glycan 
biosynthesis pathway (Fig. 7B, D). Consist with the m6A 
subgroup classification, the ONFH samples were classi-
fied into two distinct gene subtypes based on 221 DEGs 
using consensus clustering method. The two genotypes 
exhibit similar characteristics to the two m6A isoforms 
(Fig.  8A). The heatmap of expression of 221 DEGs in 
both genotypes was shown in Fig.  8B. The levels of 
expression in immune cell infiltration and 7 key m6A 

Fig. 6 Correlation between immune infltration and m6A. A Association analysis of immune infltration and m6A subtypes. B Association analysis 
of immune infltration and m6A genes. C Association analysis of immune infltration and 7 key m6A regulators. *p < 0.05, **p < 0.01, and ***p < 0.001
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regulatory factors are shown as histograms (Fig. 8C, D). 
We observed that subtype A (m6AclusterA and geneclus-
terA) of both typing patterns had higher m6A scores than 
subtype B (m6AclusterB and geneclusterB) (Fig. 8E, F).

Implications of the m6A model in the diagnosis of ONFH
In Sankey plots, m6A subtype A and genotype A had 
higher m6A scores than that of m6A subtype B and gen-
otype B (Fig.  9A). We analyzed differential expression 
of cytokines for two gene subtypes (geneclusterA and 
geneclusterB) (Fig. 9B). We also evaluated the differen-
tial expression of some cytokines (IL7, IL15, TSLP, IL34 
and IL21) between these two m6A subtype (m6Aclus-
terA and m6AclusterB) (Fig.  9C). In genocluster, IL7, 

IL15 and TSLP were higher expression in subtype A 
than that in subtype B, whereas IL34 expression was 
lower than that in subtype B. In m6Acluster, IL15 was 
higher expression in subtype A than that in subtype B, 
whereas IL34 expression was lower than that in subtype 
B.

Validation of the key m6A regulatory factors
Validation using GSE74089 confirmed the congruence 
of CBLL1, HNRNPC, YTHDF2, and YTHDF3 expres-
sion with our study findings (Fig.  10A). In Fig.  10B, 
we display X-ray images and specimen photos of both 
the FNF group and the ONFH group patients. We 
performed qRT-PCR to assess the expression CBLL1, 

Fig. 7 DEGs and GO and KEGG analyses of the m6A subtype. A The Venn plot captures the common DEGs of two m6A subtypes; B Circular plot 
presenting GO analysis for the shared DEGs; C Bubble plot depicting GO analysis for the DEGs. D Barplot displaying the KEGG analysis of DEGs
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Fig. 8 The consensus clustering analysis of DEGs. A Consensus clustering analysis divides ONFH patient samples into two genotypes; B Heatmap 
illustrating the differential expression of these 221 genes in two genotypes; C Histograms displaying the expression of seven key m6A regulators 
between two subtypes; D Histograms showing the immune infltration between both genotypes; E Variations in the m6A scores of both m6A 
subtypes; F Differences in m6A scores between the two subtypes. *p < 0.05, **p < 0.01, and ***p < 0.001
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HNRNPC, YTHDF2, and YTHDF3 in bone samples. As 
shown in Fig. 10C, qRT-PCR analysis indicated a signif-
icant upregulation of CBLL1, HNRNPC, YTHDF2, and 
YTHDF3 expression in ONFH tissues compared to the 
control group (P < 0.05).

Discussion
ONFH is a chronic degenerative disease with a com-
plex, currently unknown pathomechanism, posing chal-
lenges in diagnosis and treatment. Growing evidence 
indicates that immune response and inflammation play 
a pivotal role in the pathogenesis of ONFH [34–36]. As 
the most prevalent mRNA post-transcriptional modi-
fication in eukaryotic cells, m6A has garnered signifi-
cant attention from researchers. The etiology of ONFH 
is widely recognized to be intricately associated with 
BMSCs, encompassing factors such as decreased cell 
quantity and impaired osteogenic potential. In their 
research, Wang et  al. identified that FTO inhibits the 
osteogenic differentiation of bone marrow mesen-
chymal stem cells by mediating the demethylation of 
Runx2 mRNA, consequently leading to a decrease in 
bone mass [37]. Another study demonstrated that the 
conditional knockout of METTL3 in BMSCs resulted 
in increased bone loss and impaired bone formation 
in mice [16]. Furthermore, the down-regulation of 

METTL14 expression was observed in ONFH, and its 
up-regulation was found to enhance the proliferation 
and osteogenic differentiation of ONFH bone mar-
row mesenchymal stem cells [17]. These investiga-
tions establish a substantial correlation between m6A 
methylation and the advancement of ONFH. Moreo-
ver, recent studies have unveiled its pivotal role in both 
innate and acquired immune responses [38]. However, 
the exploration of m6A in patients with ONFH remains 
limited. In this study, we systematically investigate 
m6A’s modification patterns within the ONFH immune 
microenvironment. We explore how m6A modifica-
tions affect immune cell infiltration, response, function, 
and activation pathways in ONFH. The finding will pro-
vide new insights and guidance for the early diagnosis 
and target therapy of ONFH.

First, we obtained the transcriptome expression matrix 
and clinical data of ONFH patients from the GEO data-
base. Through differential expression analysis, we identi-
fied 13 differences in m6A gene expression between the 
normal group and ONFH patients. Specifically, YTHDF3, 
FMR1, YTHDC2, and RBM15 showed significant upreg-
ulation in ONFH samples, while ALKBH5 exhibited 
significant downregulation in ONFH samples. By utiliz-
ing the random forest algorithm, we screened seven key 
m6A regulators (CBLL1, YTHDF2, ALKBH5, RBM15B, 

Fig. 9 The significance of m6A pattern in ONFH classification. A The sankey diagram shows the relationship between the two subtypes; B The 
expression of cytokines in two subtypes; C The expression of cytokines in two m6A subtypes
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YTHDF1, HNRNPC and YTHDF3) that are implicated 
in the development of ONFH. Based on these seven key 
risk factors, we constructed a nomogram model to pre-
dict the risk of ONFH. This model holds significance in 
enabling early identification of individuals at high risk 
for ONFH during clinical practice, and the identified 
m6A regulators may serve as potential new molecular 
targets for ONFH diagnosis or treatment. Furthermore, 

we validated these 7 key m6A regulators factors through 
external datasets and bone samples. Furthermore, the 
precise role and underlying regulatory mechanisms of 
m6A modification in ONFH remain unclear.

We classified ONFH patients based on the screened 7 
key m6A regulators. Additionally, we observed expres-
sion correlations between several m6A regulators; for 
example, METTL14 showed a negative correlation with 

Fig. 10 Cross-validation of the key m6A regulatory factors in ONFH. A The expression level of m6A regulatory factors in GSE74089. B X-ray images 
of the patient and specimen photographs. C The result of qRT-PCR. *p < 0.05; **p < 0.01; ***p < 0.001
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FTO (P = 0.013), which revealed a modeled regulatory 
network for m6A. We assessed the impact of m6A modi-
fication patterns on immune cell infiltration. Our find-
ings indicated a close association between YTHDF3 and 
the infiltration of inflammatory immune cells in ONFH, 
such as Gamma Delta cell, immature dendritic cell, and 
T follicular helper cell. The YTH protein family, charac-
terized by the presence of the YTH structural domain, 
plays a significant role in organismal development and 
evolution [39]. According to reports, YTHDF3 plays an 
important functions in various tumor and immune pro-
cesses [40]. Moreover, it collaborates with YTHDF1 and 
YTHDF2 to regulate mRNA stability and degradation, 
impacting cell proliferation and differentiation [41]. Our 
study suggests that YTHDF3 may seve a key marker for 
the regulation of ONFH by immune cells particularly 
T follicular heloer cell. However, limited research has 
been conducted on the relationship between YTHDF3 
and ONFH. In addition, we found that ONFH immune 
infiltration was predominantly influenced by immune 
cells such as Gmma delta cell and Th2 cell under differ-
ent m6A modifications. T cells, being a key component of 
cell mediated acquired immunity, are closely associated 
with the development of ONFH [42]. Th2 cells, direct the 
immune response through producing signature cytokines 
to control pathogens and regulate other immune cells 
[43]. The elevated levels of IL15, IL21, and IL34 in ONFH 
patients indicate a close association between immune 
inflammatory responses and ONFH [44–46]. Collec-
tively, these findings suggest that both immune and m6A 
mediated inflammatory responses play pivotal roles in 
the ONFH, involving Th2-dominated immune cells and 
inflammatory mediators.

Our study offers novel insights and guidance for the 
early diagnosis and target therapy of ONFH. However, 
certain limitations exist in our research. First, our work in 
view of bioinformatics analysis, numerous theoretically 
effective methods require validation through additional 
wet experiments to confirm their accuracy. Second, the 
sample size of ONFH patients in our study was limited, 
warranting a larger cohort for further exploration. None-
theless, our investigation underscores the substantial 
influence of m6A modification on ONFH’s molecular 
mechanisms, furnishing a new outlook on comprehend-
ing its potential pathogenesis (Additional file 1).

Conclusion
In conclusion, our study unveils the potential regulatory 
role of m6A modification within the immune micro-
environment of ONFH. These distinctive m6A modi-
fication patterns significantly influence the initiation 
and progression of ONFH by impacting its immune 

microenvironment. The immunotyping of ONFH 
patients will assist to design precise immunotherapy 
strategies for them. Our comprehensive analysis of m6A 
modification in ONFH enhances the comprehension of 
its immunomodulatory mechanism, offering valuable 
insights for treatment and bridging research gaps in this 
domain.
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